Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 9 (44) | 122--141
Tytuł artykułu

A Novel Proportional Multi-Resonant Current Controller Strategy for Reduced DC Voltage fed D-STATCOM with Internal LCL Resonance Damping

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work focuses on a new topology-control-based D-STATCOM solution with reduced DC bus voltage requirement and with an excellent grid side performance. The proposed solution consists of a main inverter and auxiliary inverter along with a transformer and LCL filter network to achieve the required DC bus reduction. A new controller structure with two proportional-multi resonant controller for the converters with only one of the inductors current as a controlled variable ensures the active damping of the LCL resonance. The power circuit configuration assists the controller to generate a difference in the modulation signal due to non-equal gains in two controllers and helps to achieve the resonance damping without capacitor current sensor. Hence, the corresponding capacitor current sensor can be eliminated. The converter operates for any point of common coupling (PCC) loading conditions and the performance of the controller is immune to the grid impedance variation. A detailed stability study is carried out for the proposed controller. The proposed controller can achieve a very fast dynamic response with an excellent stability margin. The proposed solution is verified through simulation studies and through a scaled-down experimental prototype.
Wydawca

Rocznik
Strony
122--141
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • School of Electrical Sciences (Electrical Engineering), IIT Bhubaneswar, Argul Campus, Jatni, Odisha-752050, India
autor
  • School of Electrical Sciences (Electrical Engineering), IIT Bhubaneswar, Argul Campus, Jatni, Odisha-752050, India, dipankar@iitbbs.ac.in
Bibliografia
  • Akhavan, A., Vasquez, J. C. and Guerrero, J. M. (2021). "A Robust Stability Approach for Current-Controlled Grid-Connected Inverters Using PCC Voltage Feedforward Method," 2021 Zooming Innovation in Consumer Technologies Conference (ZINC), Novi Sad, Serbia, 2021, pp. 246-251. doi: 10.1109/ZINC52049.2021.9499278.
  • Albatran, S., Koran, A., Smadi, I. A. and Ahmad, H. J. (2018). Optimal Design of Passive RC Damped LCL Filter for Grid-Connected Voltage Source Inverters. Electrical Engineering, 100, pp. 2499–2508. doi: 10.1007/s00202-018-0725-5.
  • Almaguer, J., Cárdenas, V., Aganza-Torres, A., González, M. and Alcalá, J. (2019). A Frequency-Based LCL Filter Design and Control Considerations for ThreePhase Converters for Solid-State Transformer Applications. Electrical Engineering, 101, pp. 545–558. doi: 10.1007/s00202-019-00801-0.
  • Barva, A. V. and Joshi, S. (2022). A comprehensive survey on hybrid active power filter topologies & controller and application in Microgrid. In: 2022 IEEE Region 10 Symposium (TENSYMP), 01–03 July 2022. Mumbai, India: IEEE, pp. 1–6. doi: 10.1109/TENSYMP54529.2022.9864377.
  • Behera, R. R., Dash, A. R. and Panda, A. K. (2021). Cascaded Transformer coupled Multi-level inverter based Shunt Active Power Filter. In: 2021 Asian Conference on Innovation in Technology (ASIANCON), 27–29 August 2021. Pune, India: IEEE, pp. 1–6. doi: 10.1109/ASIANCON51346.2021.9544884.
  • Bhattacharya, A., Chakraborty, C. and Bhattacharya, S. (2012). Parallel-Connected Shunt Hybrid Active Power Filters Operating at Different Switching Frequencies for Improved Performance. IEEE Transactions on Industrial Electronics, 59(11), pp. 4007–4019. doi: 10.1109/TIE.2011.2173893.
  • Buyuk, M., Tan, A. and Tumay, M. (2018). Improved Adaptive Notch Filter-Based Active Damping Method for Shunt Active Power Filter with LCLFilter. Electrical Engineering, 100, pp. 2037–2049. doi: 10.1007/s00202-018-0685-9.
  • Gajjar, N. A. and Zaveri, T. N. (2018). A review of D-STATCOM used in solar photovoltaic system. In: 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), 24–26 October 2018. Phuket, Thailand: IEEE, pp. 1–7. doi: 10.23919/ICUE-GESD.2018.8635787.
  • Gao, L., Dougal, R. A., Liu, S. and Lotova, A. P. (2009). Parallel-Connected Solar PV System to Address Partial and Rapidly Fluctuating Shadow Conditions. IEEE Transactions on Industrial Electronics, 56(5), p. 2009. doi: 10.1109/TIE.2008.2011296.
  • Gonzalez, J. M., Busada, C. A. and Solsona, J. A. (2021). A Robust Controller for a Grid-Tied Inverter Connected through an LCL Filter. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2(1), pp. 82–89. doi: 10.1109/JESTIE.2020.3014834.
  • Hong, Q.-R., Sou, W.-K., Chan, P.-I., Gong, C. and Lam, C.-S. (2022). Review of different current control strategies for LC-coupling hybrid active power filter. In: IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, 17–20 October 2022. Brussels, Belgium: IEEE, pp. 1–6. doi: 10.1109/IECON49645.2022.9968561.
  • Jeong, H., Lee, K., Choi, S. and Choi, W. (2010). Performance Improvement of LCL-Filter-Based Grid-Connected Inverters using PQR Power Transformation. IEEE Transactions on Power Electronics, 25(5), pp. 1320–1330. doi: 10.1109/TPEL.2009.2037225.
  • Johnsana, J. S. L. and Kumar, R. S. (2022). A new shunt hybrid active power filter configuration research and implementation for enhancement of power quality. In: 2022 International Conference on Computer, Power and Communications (ICCPC), 14–16 December. Chennai, India: IEEE, pp. 547551. doi: 10.1109/ICCPC55978.2022.10072093.
  • Khenar, M., Taghvaie, A., Adabi, J. and Rezanejad, M. (2018). Multi-Level Inverter with Combined T-Type and Cross-Connected Modules. IET Power Electronics, 11(8), pp. 1407–1415. doi: 10.1049/iet-pel.2017.0378.
  • Kim, S. and Enjeti, P. N. (2002). A New Hybrid Active Power Filter (APF) Topology. IEEE Transactions on Power Electronics, 17(1), pp. 48–54. doi: 10.1109/63.988669.
  • Luo, A., Peng, S., Wu, C., Wu, J. and Shuai, Z. (2012). Power Electronic Hybrid System for Load Balancing Compensation and Frequency-Selective Harmonic Suppression. IEEE Transactions on Industrial Electronics, 59(2), pp. 723–732. doi: 10.1109/TIE.2011.2161066.
  • Luo, A., Zhao, W., Deng, X., Shen, Z. J. and Peng, J. -C. (2009). "Dividing Frequency Control of Hybrid Active Power Filter With Multi-Injection Branches Using Improved ip--iq Algorithm," in IEEE Transactions on Power Electronics, 24(10), pp. 2396-2405. doi: 10.1109/TPEL.2009.2019822.
  • Mondol, M. H., Biswas, S. P. and Hosain, M. K. (2022). A New Magnetic Linked Three Phase Multi-level Inverter with Reduced Number of Switches and Balanced DC Sources. Electrical Engineering, 104, pp. 449–461. doi: 10.1007/s00202-021-01318-1.
  • Naidu, P. G., Saibabu, C. and Satyanarayana, S. A. (2021). Single Phase Five-Level Inverter with Single and Multiple Switch Fault Tolerance Capabilities. Electrical Engineering, 103(9–3150), p. 2021. doi: 10.1007/s00202-021-01295-5.
  • Nikam, D. S. and Kalkhambkar, V. N. (2018). STATCOM and multilevel VSC topology: A review. In: 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT). Coimbatore, India: IEEE, pp. 1–7. doi: 10.1109/ICCTCT.2018.8551170.
  • Olalla, C., Clement, D., Rodriguez, M. and Maksimovic, D. (2013). Architectures and Control of Submodule Integrated DC-DC Converters for Photovoltaic Applications. IEEE Transactions on Power Electronics, 28(6), pp. 2980–2997. doi: 10.1109/TPEL.2012.2219073.
  • Pan, D., Ruan, X., Bao, C., Li, W. and Wang, X. (2014). Capacitor-Current Feedback Active Damping with Reduced Computation Delay for Improving Robustness of LCL-Type Grid-Connected Inverter. IEEE Transactions on Power Electronics, 29(7), pp. 3414–3427. doi: 10.1109/TPEL.2013.2279206.
  • Park, S., Sung, J. H. and Nam, K. (1999). A new parallel hybrid filter configuration minimizing active filter size. In: 30th Annual IEEE Power Electronics Specialists Conference. Record. (Cat. No.99CH36321), 01–01 July 1999. Charleston, SC, USA: IEEE, Vol. 1, pp. 400–405. doi: 10.1109/PESC.1999.789036.
  • Parker, S. G., McGrath, B. P. and Holmes, D. G. (2014). Regions of Active Damping Control for LCL Filters. IEEE Transactions on Industry Applications, 50(1), pp. 424–432. doi: 10.1109/TIA.2013.2266892. 140
  • Pea, J. C. U., Sampaio, L. P., de Brito, M. A. G. and Canesin, C. A. (2020). RLC Passive Damped LCL Single-Phase Voltage Source Inverter with Capability to Operate in Grid-Connected and Islanded Modes: Design and Control Strategy. Electrical Engineering, 102, pp. 2509–2519. doi: 10.1007/s00202-020-01045-z.
  • Pea-Alzola, R., Liserre, M., Blaabjerg, F., Sebastin, R., Dannehl, J. and Fuchs, F. W. (2014). Systematic Design of the Lead-Lag Network Method for Active Damping in LCL-Filter Based Three Phase Converters. IEEE Transactions on Industrial Informatics, 10(1), pp. 43–52. doi: 10.1109/TII.2013.2263506.
  • Pilli, N. K., Raghuram, M., Kumar, A. and Singh, S. K. (2019). Single DC-Source Based Seven-Level Boost Inverter for Electric Vehicle Application. IET Power Electronics, 12(13), pp. 3331–3339. doi: 10.1049/iet-pel.2019.0255.
  • Rahmani, S., Hamadi, A., Al-Haddad, K. and Dessaint, L. A. (2014). A Combination of Shunt Hybrid Power Filter and Thyristor-Controlled Reactor for Power Quality. IEEE Transactions on Industrial Electronics, 61(5), pp. 2152–2164. doi: 10.1109/TIE.2013.2272271.
  • Rosso, R., Wang, X., Liserre, M., Lu, X. and Engelken, S. (2021). Grid-Forming Converters: Control Approaches, Grid-Synchronization, and Future Trends—A Review. IEEE Open Journal of Industry Applications, 2, pp. 93–109. doi: 10.1109/OJIA.2021.3074028.
  • Sadanala, C., Pattnaik, S. and Singh, V. P. (2021). A Novel Switched Capacitor-Based Multi-level Inverter with Symmetrical and Asymmetrical Configurations. Electrical Engineering, 103, p. 14611472. doi: 10.1007/s00202-020-01172-7.
  • Satpathy, G., Patnaik, P. and De, D. (2017). Shunt compensation with reduced DC bus voltage using modulation margin controller. In: 2017 14th IEEE India Council International Conference (INDICON), 15–17 December 2017. Roorkee, India: IEEE, pp. 1–6. doi: 10.1109/INDICON.2017.8488036.
  • Srianthumrong, S. and Akagi, H. (2002). A mediumvoltage transformerless AC/DC power conversion system consisting of a diode rectifier and a shunt hybrid filter. In: Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344), 2002. Pittsburgh, PA, USA, Vol. 1, pp. 78–85. doi: 10.1109/IAS.2002.1044070.
  • Tang, Y., Loh, P. C., Wang, P., Choo, F. H., Gao, F. and Blaabjerg, F. (2012). Generalized Design of High Performance Shunt Active Power Filter with Output LCL Filter. IEEE Transactions on Industrial Electronics, 59(3), pp. 1443–1452. doi: 10.1109/TIE.2011.2167117.
  • Tangtheerajaroonwong, W., Hatada, T. and Akagi, H. (2007). A Transformerless Hybrid Active Filter Using a Three-Level Diode-Clamped PWM Converter. In: 2007 Power Conversion Conference – Nagoya, 02–05 April 2007. Nagoya, Japan: IEEE, pp. 667–673. doi: 10.1109/PCCON.2007.373037.
  • Wang, X., Blaabjerg, F. and Loh, P. C. (2016). GridCurrent-Feedback Active Damping for LCL Resonance in Grid-Connected Voltage-Source Converters. IEEE Transactions on Power Electronics, 31(1), pp. 213–223. doi: 10.1109/TPEL.2015.2411851.
  • Wu, W., He, Y., Tang, T. and Blaabjerg, F. (2013). A New Design Method for the Passive Damped LCL and LLCL Filter-Based Single-Phase GridTied Inverter. IEEE Transactions on Industrial Electronics, 60(10), pp. 4339–4350. doi: 10.1109/TIE.2012.2217725.
  • Yao, W., Yang, Y., Zhang, X., Blaabjerg, F. and Loh, P. C. (2017). Design and Analysis of Robust Active Damping for LCL Filters using Digital Notch Filters. IEEE Transactions on Power Electronics, 32(3), pp. 2360–2375. doi: 10.1109/TPEL.2016.2565598.
  • Yin, J., Duan, S. and Liu, B. (2013). Stability Analysis of Grid-Connected Inverter with LCL Filter Adopting a Digital Single-Loop Controller with Inherent Damping Characteristic. IEEE Transactions on Industrial Informatics, 9(2), pp. 1104–1112. doi: 10.1109/TII.2012.2222424.
  • Zhang, Q., Qian, L., Zhang, C. and Cartes, D. (2006). Study on grid connected inverter used in high power wind generation system. In: Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, 0812 October 2006. Tampa, FL, USA: IEEE, Vol. 2, pp. 1053–1058. doi: 10.1109/IAS.2006.256654.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e504e926-200a-4352-be46-da97674a1aa9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.