Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 64, nr 1 | 136--142
Tytuł artykułu

Fat Dormouse (Glis glis L.) Distribution Modeling in the Hyrcanian Relict Forests of Northern Iran

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fat dormouse (Glis glis L.) is a small arboreal and extreme habitat specialist mammal that is tightly linked to the deciduous mixed forests dominated by Beech (Fagus orientalis) and oaks (Quercus sp.). Despite its status in Iran as a least concern species, dormice face high risk of extinction in some parts of Europe. The unique life history and large scale distribution of the species in the Palearctic region made it as an ideal model species. This habitat specialist rodent is particularly sensitive to size and connectivity of the forest patches. The fat dormouse shows very deep molecular and morphological divergence in its eastern most parts of its global distribution, in the Hyrcanian refugium of the Northern Iran. Therefore modeling its distributional range can leads to identify biodiversity hotspots and planning conservation activities. The meteorological data, land cover types, topographical variables and geo-referenced points representing geographical locations of the fat dormouse populations (latitude/longitude) in the study area were used as the primary MaxEnt model input data. The predictive accuracy of the Fat Dormouse ecological niche model was significant (training accuracy of 93.3%). This approach successfully identified the areas of the fat dormouse presence across the study area. The result suggests that the maximum entropy modeling approach can be implemented in the next step towards the development of new tools for monitoring the habitat fragmentation and identifying biodiversity hotspots.
Wydawca

Rocznik
Strony
136--142
Opis fizyczny
Bibliogr. 28 poz., mapa, tab., wykr.
Twórcy
autor
  • Department of Environmental Sciences, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349, Arak, Iran, m-naderi@araku.ac.ir
autor
  • Department of Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
autor
  • Department of Environmental Sciences, Faculty of Natural Resources, Isfahan University of Technology, Isfahan, Iran
  • Slovenian Museum of Natural History, Vertebrate Department, Ljubljana, Slovenia
Bibliografia
  • [1] Amori G. , Cantini M. , Rtoa V. 1995 — Distribution and conservation of Italian dormice — Hystrix, 6: 331–336.
  • [2] Austin M. P. 2002 — Spatial prediction of species distribution: an interface between ecological theory and statistical modeling — Ecol. Model. 157: 101–118.
  • [3] Baldwin R. A. 2009 — Use of Maximum Entropy Modeling in Wildlife Research — Entropy, 11, 854–866.
  • [4] Capizzi D. , Battistini M. , Amori G. 2003 — Effects of habitat fragmentation and forest management on the distribution of the edible dormouse Glis glis — Acta Theriol. 48: 359–371.
  • [5] Castiglia R. , Annesi F. , Cattaneo C. , Grano M. , Milana G. , Amori G. 2012 — A new mitochondrial lineage in the edible dormouse, Glis glis (Rodentia: Gliridae), from Alonissos island (Sporades archipelago, Greece) — Fol. Zool. 61:177–180.
  • [6] Grendar M. Jr. , Grendar, M. 2001. Maximum entropy, clearing up mysteries — Entropy 3: 58–63.
  • [7] Elith J. , Phillips S. J. , Hastie T. , Dudík M. , Chee Y. E. , Yates C. J. et al. 2011 — A statistical explanation of MaxEnt for ecologists — Diver. Distrib. 17: 43–57.
  • [8] Fielding A. H. , Bell J. F. 1997 — A review of methods for the assessment of prediction errors in conservation presence/absence models — Environ. Conserve. 24: 38–49.
  • [9] Franklin J. 2010 — Mapping Species Distributions: Spatial Inference and Prediction — Cambridge University Press, Cambridge, UK.
  • [10] Gastón A. , García-Viñas J.I. 2011 — Modeling species distributions with penalized logistic regressions: A comparison with maximum entropy models — Ecol. Model. 222: 2037–2041.
  • [11] Helvaci Z. , Renaud S. , Ledevin R. , Adriaens D. , Michaux J. , Çolak R. , Kankiliç T. , Kandemir I. , Yiğit N. , Çolak E. 2012 — Morphometric and genetic structure of the edible dormouse (Glis glis): a consequence of forest fragmentation in Turkey — Biol. J. Linn. Soc. 107: 611–623.
  • [12] Hernandez P. A. , Graham C. H. , Master L. L. , Albert D. L. 2006 — The effect of sample size and species characteristics on performance of different species distribution modeling methods — Ecography, 29: 773–785.
  • [13] Hijmans R. J. , Cameron S. E. , Parra J. L. , P. G. Jones , Jarvis A. 2005 — Very high resolution interpolated climate surfaces for global land areas — Int. J. Climatol. 25: 1965–1978.
  • [14] Hürner H. , Krystufek B. , Sarà M. , Ribas A. , Ruch T. , Sommer R. , Ivashkina V. , Michaux J.R. 2010 — Mitochondrial phylogeography of the edible dormouse (Glis glis) in the Western Palearctic Region — J. of Mamm. 91: 233–242.
  • [15] Hutchinson G. E. 1957 — Concluding remarks. Cold Spring Harbor Symp. — Quan. Biol. 22: 415–427.
  • [16] Ko C. Y. , Lee P. F. , Bai M. L. , Lin R. S. 2009 — A rule-based species prediction model for vulnerable Fairy Pitta (Pitta nympha) in Taiwan — Taiwania, 54: 28–36.
  • [17] Kryštufek B. 2010 — Glis glis (Rodentia: Gliridae) — Mamm. Species, 42: 195–206.
  • [18] Lo Brutto S. , Sará M. , Arculeo M. , 2011 — Italian Peninsula preserves an evolutionary lineage ofthe fat dormouse Glis glis L. (Rodentia: Gliridae) — Biol. J. Linn. Soc. 102: 11–21.
  • [19] Mortelliti A. , Amori G. , Annesi F. , Boitani L. 2009 — Testing for the relative contribution of patch neighborhood, patch internal structure, and presence of predators and competitor species in determining distribution patterns of rodents in a fragmented landscape — Can. J. Zool. 87: 662–670.
  • [20] Mortelliti A. , Santulli Sanzo G. , Boitani L. 2009 — Species' surrogacy for conservation planning: caveats from comparing the response of three arboreal rodents to habitat loss and fragmentation — Biodiver. Conserv. 18: 1131–1145.
  • [21] Mortelliti A. , Amori G. , Boitani L. 2010 — The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research — Oecologia, 163:535–47.
  • [22] Naderi Gh. , Kaboli M. , Koren T. , Karami M. , Zupan S. , Rezaei H. R. , Krystufek B. 2013 — Mitochondrial evidence uncovers a refugium for the fat dormouse (Glis glis Linnaeus, 1766) in Hyrcanian forests of northern Iran — Mamm. Biol. 79: 202–207.
  • [23] Naderi Gh. , Kaboli M. , Karami M. , Rezaei H. R. , Lahoot M. , Kamran M. , Koren T. , Kryštufek B. 2014 — Mammary number and litter size of the fat dormouse on the Southern Caspian coast — Mammalia, 78: 335–338.
  • [24] Phillips S. J. , Anderson R. P. , Schapire R. E. 2006 — Maximum entropy modeling of species geographic distributions — Ecol. Model. 190: 231–259.
  • [25] Phillips S. J. , Dudík M. , Schapire R. E. 2004 — A maximum entropy approach to species distribution modeling (In: Proceeding of 21st International Conference on Machine Learning) — ACM Press: New York, NY, USA, pp. 655–662.
  • [26] Phillips S. J. , Dudík M. , Schapire R. E. 2009 — MaxEnt software for species habitat modeling, version 3.3.1. Available online: http://www.cs.princeton.edu/~schapire/MaxEnt/ (accessed on August 19, 2009).
  • [27] Rebelo H. , Jones G. 2010 — Ground validation of presence-only modelling with rare species: a case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae) — J. Appl. Ecol. 47: 410–420.
  • [28] U.S. Geological Survey 2004 — “Mineral Commodity Summaries”, U.S. Government Printing Office, Washington, D.C.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4fa25d2-4efb-40bd-993c-83c834fc8685
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.