Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | no. 62 | 157--165
Tytuł artykułu

Hydrographic and hydrochemical characteristics of selected groundwater outflows in desert and semi-desert areas

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presence of natural groundwater outflows depends on many factors, such as lithology, geological structure, and climate. Areas with particularly poor crenological recognition are arid and semi-arid regions, primarily due to rarity of groundwater outflows in these locations. The article presents the hydrographic and hydrochemical characteristics of selected groundwater outflows in arid and semi-arid areas. In addition to hydrographic mapping, basic physical parameters of water were measured in selected springs, such as temperature (T, °C), electrolytic conductivity (EC, μS∙cm-1), and reaction (pH, –). Laboratory analyses determined the major cations and anions in water: Ca2+, Mg2+, Na+, K+, NH4+, SO42-, Cl-, NO3-, Br-, PO43-. The analyses were performed using an ion chromatograph Metrohm 850 Professional IC. Twenty-four natural groundwater outflows in South America, Africa, and Asia were selected for research. It was found that the vast majority of outflows are transit sources. Their supply area may be far from discharge points. The supply source is rainwater or meltwater from high mountain massifs. Other types of outflow are springs of alluvial fans and braided rivers. They are fed by waters from glacial rivers, which infiltrate alluvial deposits and flow back to the surface. Hydrochemical analysis has shown that the physicochemical properties of water in dry areas vary significantly. Still in the hydrochemical type, there is a predominance of sulphate, chloride, and sodium ions. This distinguishes the spring waters from these areas in temperate latitudes, which are dominated by bicarbonate and calcium ions.
Słowa kluczowe
Wydawca

Rocznik
Tom
Strony
157--165
Opis fizyczny
Bibliogr. 29 poz., fot., rys., tab., wykr.
Twórcy
  • Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińska St., 60, 41-200 Sosnowiec, Poland, tadeusz.molenda@us.edu.pl
Bibliografia
  • Andrews, J.E. et al. (1999) Wprowadzenie do chemii środowiska [Introduction to Environmental Chemistry]. Warszawa: WNT.
  • Bhat, S. and Pandit, A.K. (2020) “Water quality assessment and monitoring of Kashmir Himalayan freshwater springs – A case study,” Aquatic Ecosystem Health and Management, 23(3), pp. 274–287. Available at: https://doi.org/10.1080/14634988.2020.1816771.
  • Błachowicz, M., Buczyński, S. and Staśko, S. (2019) “Temperatura wód podziemnych jako wskaźnik zasilania na przykładzie ujęcia dla Wrocławia [Groundwater temperature as an indicator of supply on the example of the intake for Wrocław],” Biuletyn Państwowego Instytutu Geologicznego – Hydrogeologia, 16.
  • Bortnikova, S.B., Bessonova, E.P. and Zelenskii, M.E. (2005) “Hydrogeochemistry of thermal springs at Ebeco volcano (Kuril Islands),” Proceedings World Geothermal Congress 2005, Antalya, Turkey 24–29 Apr 2005. Auckland, N.Z.: International Geothermal Association. Available at: https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2005/0873.pdf (Accessed: February 10, 2024).
  • Bortnikova, S.B. et al. (2008) “Hydrogeochemistry of thermal sources, Mutnovsky Volcano, South Kamchatka (Russia),” Proceedings, Thirty-Third Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, Jan 28–30. Red Hook, NY: Curran Associates, Inc., SGP-TR-185. Available at: https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2008/bortniko.pdf (Accessed: February 10, 2024).
  • Bortnikova, S.B., Sharapov, V.N. and Bessonova, E.P. (2007) “Hydrogeochemical composition of springs at the Donnoe fumarole field, Mutnovsky Volcano (Southern Kamchatka) and problems of their relation with supercritical magmatic fluids,” Doklady Earth Sciences, 413, pp. 410–414. Available at: https://doi.org/10.1134/S1028334X07030208.
  • Cantonati, M. et al. (2012) “Crenic habitats, hotspots for freshwater biodiversity conservation: Toward an understanding of their ecology,” Freshwater Science, 31(2), pp. 463–480. Available at: https://doi.org/10.1899/11-111.1.
  • Dawydow, L.K., Dmitrijewa, A.A. and Konkina, N.G. (1979) Hydrologia ogólna [General hydrology]. Warszawa: Wydaw. Nauk. PWN.
  • Gutry-Korycka, M. and Werner-Więckowska, H. (eds.) (1996) Przewodnik do hydrograficznych badań terenowych [Guide to hydrographic field studies]. 2 nd ext. edn. Warszawa: Wydaw. Nauk. PWN.
  • Jasik, M., Małek, S. and Krakowian, K. (2020) “Hydrochemical types of spring waters in West Carpathian catchments (Poland) under different pressure of acidic deposition,” Sustainability, 12, 7158. Available at: https://doi.org/10.3390/su12177158.
  • Kalesnik, S. (1973) Podstawy geografii fizycznej [Basics of physical geography]. Warszawa: PWN.
  • Kompass (2019) Teneriffa [Tenerife]. Innsbruck: Kompass-Karten GmbH.
  • Kresic, N. and Stevanovic, Z. (eds.) (2009) Groundwater hydrology of springs: Engineering, theory, management and sustainability. Oxford: Butterworth-Heinemann. Available at: https://doi.org/10.1016/C2009-0-19145-6.
  • Macioszczyk, A. (1987) Hydrogeochemia [Hydrogeochemistry]. Warszawa: PWG.
  • Mioduszewski, W. (2007) Budowa stawów [Construction of water ponds]. Warszawa: Ofic. Wydaw. Hoża.
  • Molenda, T. (2018) “Wybrane atrakcje geoturystyczne południowo-wschodniego Kazachstanu [Selected geotouristic attractions of south-eastern Kazakhstan],” Acta Geographica Silesiana, 12(4), pp. 27–42. Available at: https://rebus.us.edu.pl/bitstream/20.500.12128/7884/1/Molenda_Wybrane_atrakcje_geoturystyczne.pdf (Accessed: February 10, 2024).
  • Molenda, T. (2019) “Atrakcje geoturystyczne Gruzji (na przykładzie wybranych obiektów z obszarów krasowych i wulkanicznych) [Geotourism attractions of Georgia (on the example of selected objects from karst and volcanic areas),” Acta Geographica Silesiana, 13(2), pp. 95–110. Available at: https://rebus.us.edu.pl/bitstream/20.500.12128/12024/1/Molenda_Atrakcje_geoturystyczne_Gruzji_na_przykladzie_wybranych_obiektow.pdf (Accessed: February 10, 2024).
  • Molenda, T. and Frydecka, K. (2021) “Physical and chemical properties of natural and anthropogenic groundwater outflows in the Cieszyn foothills,” Ecohydrology and Hydrobiology, 20(4), pp. 687–692. Available at: https://doi.org/10.1016/j.ecohyd.2020.05.005.
  • Mycielska-Dowgiałło, E., Korotaj-Kokoszczyńska, M. and Rutkowski, J. (2001) Geomorfologia dynamiczna i stosowana [Dynamic and applied geomorphology]. Warszawa: Wydział Geografii i Studiów Regionalnych UW.
  • Pleczyński, J. (1985) “Temperatura jako wskaźnik badania związków wód powierzchniowych i podziemnych [Temperature as an indicator for studying the relationships between surface and groundwater],” in Aktualne problemy hydrogeologii [Current problems of hydrogeology]. Kraków: Wydaw. AGH, pp. 513–520.
  • R Core Team (2022) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
  • Siwek, J. (2013a) “Chemizm wód źródlanych. Chemizm wód w 2011 r. [Spring water chemistry. Water chemistry in 2011],” in J. Siwek and M. Baścik (eds.) Przyrodnicze i antropogeniczne przemiany źródeł Wyżyn Krakowsko-Wieluńskiej i Miechowskiej oraz ich rola w krajobrazie naturalnym i kulturowym [Natural and anthropogenic transformations of the sources of the Kraków-Wieluń and Miechów Uplands and their role in the natural and cultural landscape]. Kraków: IGiGP UJ, pp. 68–73.
  • Siwek, J. (2013b) “Chemizm wód źródlanych. Porównanie składu chemicznego wód w latach 1999–2000 i w 2011 r. [Spring water chemistry. Comparison of water chemistry in 1999–2000 and 2011],” in J. Siwek and M. Baścik (eds.) Przyrodnicze i antropogeniczne przemiany źródeł Wyżyn Krakowsko-Wieluńskiej i Miechowskiej oraz ich rola w krajobrazie naturalnym i kulturowym [Natural and anthropogenic transformations of the sources of the Kraków-Wieluń and Miechów Uplands and their role in the natural and cultural landscape]. Kraków: IGiGP UJ, pp. 74–86.
  • Springer, A.E. and Stevens, L.E. (2009) “Spheres of discharge of springs,” Hydrogeology Journal, 17, pp. 83–93. Available at: https://doi.org/10.1007/s10040-008-0341-y.
  • Stevens, L.E., Schenk, E.R. and Springer, A.E. (2021) “Springs ecosystem classification,” Ecological Applications, 31(1), e002218. Available at: https://doi.org/10.1002/eap.2218.
  • Taloor, A.K. et al. (2020) “Spring water quality and discharge assessment in the Basantar watershed of Jammu Himalaya using geographic information system (GIS) and water quality index (WQI),” Groundwater for Sustainable Development, 10, 100364. Available at: https://doi.org/10.1016/j.gsd.2020.100364.
  • Tomaszewski, J. (1996) “Badanie naturalnych wypływów wód podziemnych [Study of natural groundwater outflows],” in M. Gutry-Korycka and H. Werner-Więckowska (eds.) Przewodnik do hydrograficznych badań terenowych [Guide to hydrographic field studies]. Warszawa: Wydaw. Nauk. PWN.
  • Żelazny, M. (2012) Czasowo-przestrzenna zmienność cech fizykochemicznych wód Tatrzańskiego Parku Narodowego [Time-spatial variability of physicochemical properties of waters in the Tatra National Park]. Kraków: IGiGP UJ.
  • Żelazny, M. et al. (2007) “Skład chemiczny wód w wybranych małych zlewniach w Dolinie Chochołowskiej w Tatrach [Chemical composition of water in selected small catchments in the Chochołowska Valley in the Tatra Mountains],” Współczesne Problemy Hydrogeologii [Contemporary Problems of Hydrogeology], 13, pp. 919–928.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e4ad0b99-1767-4e46-93e3-3aa46a6d0956
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.