Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 21 | 521--524
Tytuł artykułu

Face Mask Detection at the Fog Computing Gateway

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (15 ; 06-09.09.2020 ; Sofia, Bulgaria)
Języki publikacji
EN
Abstrakty
EN
This work proposes a fog computing-based system for face mask detection that controls the entry of a person into a facility. The proposed system uses fog nodes to process the video streams captured at various entrances into a facility. Haar-cascade-classifiers are used to detect face portions in the video frames. Each fog node deploys two MobileNet models, where the first model deals with the dichotomy between mask and no mask case. The second model deals with the dichotomy between proper mask wear and improper mask wear case and is applied only if the first model detects mask in the facial image. This two-level classification allows the entry of people into a facility, only if they wear the mask properly. The proposed system offers performance benefits such as improved response time and bandwidth consumption, as the processing of video stream is done locally at each fog gateway without relying on the Internet.
Wydawca

Rocznik
Tom
Strony
521--524
Opis fizyczny
Bibliogr. 16 poz.,
Twórcy
  • School of Computer and Information Sciences, University of Hyderabad, Hyderabad, India, nks@uohyd.ac.in
autor
  • School of Computer and Information Sciences, University of Hyderabad, Hyderabad, India, atul.negi@uohyd.ac.in
Bibliografia
  • 1. J. Howard, A. Huang, Z. Li, Z. Tufekci, V. Zdimal, H. van der Westhuizen et al., "Face Masks Against COVID-19: An Evidence Review", Preprints 2020, 2020040203, http://dx.doi.org/10.20944/preprints202004.0203.v1
  • 2. S. Sarkar, R. Wankar, S. Srirama and N.K Suryadevra, “Serverless Management of Sensing Systems for Fog Computing Framework”, IEEE Sensors Journal, ISSN: 1530-437X, 20(3):1564-1572, 2020, http://dx.doi.org/10.1109/JSEN.2019.2939182
  • 3. S. R. Rudraraju, N. K. Suryadevara and A. Negi, "Face Recognition in the Fog Cluster Computing," IEEE International Conference on Signal Processing, Information, Communication & Systems, 2019, pp. 45-48, http://dx.doi.org/10.1109/SPICSCON48833.2019.9065100
  • 4. N. N. Khan, “Fog computing: A better solution for IoT,” International Journal of Engineering and Technical Research., vol. 3, no. 2, pp. 298–300, 2015, ISSN: 2321-0869
  • 5. M. Aazam, S. Zeadally, and K. A. Harrass, “Fog Computing Architecture, Evaluation, and Future Research Directions”, IEEE Communications Magazine (2018), pp. 46-52
  • 6. A. Nag, J. N. Nikhilendra, and M. Kalmath, "IOT Based Door Access Control Using Face Recognition", International Conference for Convergence in Tech., http://dx.doi.org/10.1109/i2ct.2018.8529749
  • 7. P. Hu, H. Ning, T. Qiu, Y. Zhang, and X. Luo, "Fog Computing Based Face Identification and Resolution Scheme in Internet of Things", IEEE Transactions on Industrial Informatics, 13(4), 1910–1920, 2017, http://dx.doi.org/10.1109/tii.2016.2607178
  • 8. COVID-19: Face Mask Detector, Last accessed 05 Jun 2020, URL:https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detector-with-opencv-keras-tensorflow-and-deep-learning/
  • 9. Face Mask Detection, Last accessed 10 Jun 2020, URL: https://www.towardsdatascience.com/covid-19-face-mask-detection-using-tensorflow-and-opencv-702dd833515b
  • 10. OpenCV, Last accessed 19 May 2020, URL: https://opencv.org/about
  • 11. Keras Guide, Last accessed 9 May 2020, URL: https://keras.io/guides/
  • 12. TensorFlow Tutorials, Last accessed 10 Jun 2020, URL: https://www.tensorflow.org/tutorials
  • 13. MobileNet, Last accessed 20 May 2020, URL: https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet
  • 14. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand et al., “Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” https://arxiv.org/abs/1704.04861, 2017
  • 15. Face Mask Dataset, Last accessed 21 Jun 2020, URL: https://github.com/X-zhangyang/Real-World-Masked-Face-Dataset
  • 16. Transfer Learning, Last accessed 21 May 2020, URL: https://www.tensorflow.org/tutorials/images/transfer_learning
Uwagi
1. Track 3: Network Systems and Applications
2. Technical Session: 4th Workshop on Internet of Things - Enablers, Challenges and Applications
3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e49f1da6-6629-46b0-a135-10dbfaeb2a75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.