Warianty tytułu
Oparta na optymalizacji metoda strojenia regulatorów PI dla systemów podlegaj ˛acych ograniczeniom sterowania i wydajnosci
Języki publikacji
Abstrakty
This article presents an optimization-based method to tuning Proportional-Integral (PI) controllers for systems subject to actuator saturation and constraints on the controlled variable. The theory of invariant sets is used to treat constraints and a polytopic model is adopted to account for actuator saturation. For the numerical validation of the method, four examples are presented. The results show that the method can establish a tuning that does not violate any constraint.
W artykule przedstawiono opartą na optymalizacji metodę strojenia regulatorów proporcjonalno-całkujących (PI) dla układów podlegających nasyceniu elementów wykonawczych i ograniczeniom na regulowaną zmienną. Teoria zbiorów niezmienniczych jest wykorzystywana do leczenia ograniczen, a model politopowy jest przyjmowany w celu uwzględnienia nasycenia elementu wykonawczego. W celu numerycznej walidacji metody przedstawiono cztery przykłady. Wyniki pokazują, ze metoda może ustanowić strojenie, które nie narusza żadnego ograniczenia.
Czasopismo
Rocznik
Tom
Strony
145--153
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte - Technology Center, UFRN Campus Universitário Lagoa Nova, 59078-970, Natal, RN, BRAZIL, kleitonmartins@dca.ufrn.br
autor
- Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte - Technology Center, UFRN Campus Universitário Lagoa Nova, 59078-970, Natal, RN, BRAZIL
autor
- Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte - Technology Center, UFRN Campus Universitário Lagoa Nova, 59078-970, Natal, RN, BRAZIL
Bibliografia
- [1] Åström, K. & Hägglund, T. (2004). Revisiting the Ziegler–Nichols step response method for PID control. Journal of process control, 14(6), 635–650.
- [2] Åström, K.J. & Hägglund, T. (1995). PID controllers: theory,design, and tuning, volume 2. Instrument society of AmericaResearch Triangle Park, NC.
- [3] Bemporad, A., Morari, M.and Dua, V., and Pistikopoulos, E.(2002). The explicit linear quadratic regulator for constrainedsystems. Automatica, 38, 3–20.
- [4] Berbaoui, Brahim and Benachaiba, Chellali and Rahli, Mustapha and Tedjini, Hamza. An efficient algorithm to tuning PI-controller parameters for shunt active power filter usingant colony optimization. PRZEGLĄD ELEKTROTECHNICZNY(Electrical Review), v. 6, p. 140-145, 2011.
- [5] Blanchini, F. and Miani, S. (2008). Set-theoretic methods incontrol. Springer.
- [6] Blanchini, F., Miani, S., and Savorgnan, C. (2007). Stability results for linear parameter varying and switching systems. Automatica, 43(10), 1817–1823.
- [7] Brião, S.L., Castelan, E.B., Camponogara, E., and Ernesto,J.G. (2021). Output feedback design for discrete-time constrained systems subject to persistent disturbances via bilinear programming. Journal of the Franklin Institute, 358(18), 9741-9770.
- [8] Castelan, E.B. & Hennet, J.C. (1992). Eigenstructure assignment for state constrained linear continuous time systems. Automatica, 28(3), 605–611.
- [9] Gomes da Silva Jr, J., Ghiggi, I., and Tarbouriech, S. (2008).Non-rational dynamic output feedback for time-delay systemswith saturating inputs. International Journal of Control, 81(4), 557–570.
- [10] Gropp, W. & Moré, J.J. (1997). Optimization environments andthe neos server. In M.D. Buhman and A. Iserles (eds.) Approximation Theory and Optimization, 167 182. Cambridge University Press.
- [11] Hennet, J.C. (1989). Une extension du lemme de farkas et sonapplication au probleme de égulation linéaire sous contraintes.CR Acad. Sci. Paris, 308(SERIE I), 415–419.
- [12] Mayne, D.Q., Rawlings, J.B., Rao, C.V., and Scokaert, P.O.(2000). Constrained model predictive control: Stability and optimality. Automatica, 36(6), 789–814.
- [13] Normey-Rico, J.E. (2007). Control of dead-time processes.Springer Science & Business Media.
- [14] Pedrosa, M.V.A. (2018). Positive Invariance of Polyhedral Domains for Linear Systems in the Perspective of the Delta Operator (in Portuguese), Master’s Thesis, Federal University ofSanta Catarina (UFSC), Brazil.
- [15] Pinto, J.E.M.G., de Azevedo Dantas, A.F.O., Maitelli, A.L.,da Silva Dantas, A.D.O., Dórea, C.E.T., Campos, J.T.L.S., andde Castro Rego, E.J. (2019). PLC implementation of piecewise affine PI controller applied to industrial systems with constraints. Journal of Control, Automation and Electrical Systems, 30(3), 311–322.
- [16] Romasevych, Yuriy and Loveikin, Viatcheslav and Usenko, Sergii. PI-controller tuning optimization via PSO-based technique PRZEGLĄD ELEKTROTECHNICZNY, v. 95, p. 33–37, 2019.
- [17] dos Santos, G.A.F., Castelan, E.B., and Ernesto, J.G. (2021).PI-controller design for constrained linear systems using positive invariance and bilinear programming. In 2021 IEEE International Conference on Automation/XXIV Congress of theChilean Association of Automatic Control (ICA-ACCA), 1–7.IEEE.
- [18] Tarbouriech, S., Garcia, G., da Silva Jr, J.M.G., and Queinnec, I. (2011). Stability and stabilization of linear systems withsaturating actuators. Springer Science & Business Media.
- [19] Tarbouriech, S. and Turner, Matthew (2009) Anti-windup design: an overview of some recent advances and open problems IET control theory & applications,3, 1–19
- [20] Tchamna, R. & Lee, M. (2018). Analytical design of an industrial two-term controller for optimal regulatory control ofopen-loop unstable processes under operational constraints.ISA transactions, 72, 66–76.
- [21] Vassilaki, M., Hennet, J., and Bitsoris, G. (1988). Feedbackcontrol of linear discrete-time systems under state and Control constraints. International Journal of control, 47(6), 1727–1735.
- [22] Vašak, Mario and Peric, N, Stability analysis of a patched LQR ´control system for constrained multi-mass electrical drives.PRZEGLĄD ELEKTROTECHNICZNY, v. 85, n. 7, p. 109-114, 2009.
- [23] Ziegler, J.G., Nichols, N.B., et al. (1942). Optimum settings forautomatic controllers. trans. ASME, 64(11).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e45bbb1c-a14e-4885-8f6a-7e0657a2052c