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1. Introduction  
 
Chess is one of the most popular board games in 
the world. The multitude of tactics and strategies 
reduces the repetitiveness of the games played, 
making them unique. The “royal game” has been 
an object of interest for programmers since the 
beginning of the existence of computers [1].  
At first programs were implemented to play the 
game for two people, later programs were able to 
compete with a man. Due to the large number of 
possible moves the chess engines of those days 
were not able to match the best chess players in 
the world. In recent years, machine learning has 
played an important role in the development of 
chess engines. Classical engines based on 
minimax algorithm had to give way to engines 
based on machine learning. 

This paper presents two approaches for 
teaching a computer to play chess. The first 
method is based on a neural network model  
[2, 6, 8] that will be able to return the best move 
based on data representing a chess position [3]. 
The second method involves a Monte Carlo Tree 
Search algorithm and a neural network model 
that assists in the process of selecting branches 
in the tree and evaluates the chess position [5]. 

 
2. Approach based on the use of 

played games 
 
One method of machine learning for teaching  
a computer to play chess is to use a collection of 
chess positions and moves made by chess 
masters. In this method, the moves made from 
the dataset are assumed to be optimal. 

To teach an artificial neural network, a set 
of input data and a set of output data are needed. 
In the method presented here, the input data set 
is the numbers which are the representation of 
the setting of the pieces on the chessboard.  
The online chess service Lichess provides 
monthly data from the games played in the last 
month. Each game contains metadata 
concerning, among others, playersʼ ranking and 
the course of the game itself in the form of chess 
algebraic notation. In the learning process one 
should use games of players with high ranking in 
order to minimize the number of weak moves. 
The position is represented as a sequence of 384 
numbers. This sequence consists of 6 strings of 
64 numbers for each type of chess piece. Each 
position in the sequence relates to a specific field 
on the chessboard. The number in the first 
position in the sequence concerns the field A8 
(upper left corner of the board), and the number 
in the last position concerns the field H1 (lower 
right corner of the board from the perspective of 
the player using white chess pieces, according to 
the Forsyth–Edwards notation [9]). The numbers 
in the sequence take 3 values:  
• 1 – if there is a particular type of chess piece 

on the field belonging to the side making  
the move, 

• 0 – if there is no piece on the field or a piece 
of a different type, 

• –1 – if there is a piece of a particular type on 
the field belonging to the opposite side.  

If black makes a move in a given position, the 
numbers in the sequence refer to the fields in 
reverse order, i.e. starting with H1 and ending 
with A8. The output is a sequence of zeros and  
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a single one at the position corresponding to the 
field. The position in the sequence corresponds 
to the fields in the order from A8 to H1. The 
solution uses two types of models; in one the 
output is for the field from which the player 
made the move, in the other it is for the field to 
which the move was made. 

In each position without verifying that the 
move is legal, and ignoring the various 
possibilities for promoting the pawn, there are 
4096 possible moves, 64 possibilities from 
which field the move is made, and – for each of 
these options – 64 possibilities of the field to 
which the move is made. Therefore, this problem 
requires the use of several models. The first 
model is responsible for choosing which chess 
piece is moved. The next six models (a different 
model for each piece type) will indicate on 
which field it is best to place the piece of a given 
type. The move considered the best will be the 
one with the highest value of the product of 
“from which field” and, depending on what kind 
of a piece is on that field, the value from a given 
model “to which field”. 

The online chess service Lichess provides 
the run of games recorded in chess algebraic 
notation. Data preparation requires the 
implementation of a converter that converts  
the move notation into two values: from which 
field the move was made and to which field  
the move was made. In the implementation, 
fields are specified by numeric values from 0  
to 63, starting at field A8 and ending at H1. 
Movements will be stored in the form (“from 
which field”, “to which field”). The 
determination of the numerical value of the field 
designation is obtained from the formula:  
 

f(w, k) = 8 * (w – 1) + a – 97             (1) 
 
The check “+” and checkmate “#” notations are 
omitted because they do not affect the 
determination of fields. Moves in notation can 
be divided into three categories, given below:  
• Figure moves – notation begins with one of 

the letters: K (king), Q (queen), R (rook),  
B (bishop), N (knight). In order to convert  
a notation into a move, all legal moves for 
all the pieces of a given type must be 
generated. The field occupied by the figure 
making the move to a field will be the value 
“from which field” in the notation.  
If a column and/or row description is also 
given in the notation, then figures not in  
that row and/or column are excluded.  
The “to which field” value is obtained by 

substituting the field notation contained in 
the move notation; 

• Castling – marked “O-O” or “O-O-O”, 
Information about the side making the 
move is sufficient to determine the fields 
associated with the move. For whites, short 
castling is move (60, 62), long castling (60, 
58), while for black, short castling is (4, 6) 
and long castling is (4, 2); 

• Pawn moves – the notation doesn’t start 
with a letter characterizing the figures.  
If the pawn move is not capturing, then  
the first two symbols indicate the value of  
“to which field”. The value “from which 
field” is obtained by checking which pawn 
can move there. If the movement of a pawn 
is a capture, then the movement notation 
also contains the column which the pawn 
moves from. The value “from which field” 
is obtained from the field from which the 
pawn in that column can move to the field 
in the notation. Additionally, when a pawn 
moves to the last row, the move notation 
contains information about the piece the 
pawn will change into. When making  
a move, the promotion option is taken into 
account. 
After converting the notation into two 

numerical values of the move and the potential 
option of the pawn promotion, it is possible to 
make a move on the chessboard. Before  
the move is made, the current state on  
the chessboard is converted into input data.  
In the model responsible for selecting a chess 
piece, the output consists of 64 zeros and  
a single one in the place corresponding to the 
value “from which field”. Then, depending on 
the type of chess piece that the move is made 
with, the input data for this model is identical to 
that of the piece selection model. The output 
data, on the other hand, has the same format as 
in the piece selection model, except that a single 
one is in the place corresponding to the value  
“to which field”. 

Each of the seven models mentioned earlier 
has the same structure. The models consist of 
three hidden layers, one with 32 neurons and two 
with 128 neurons. In the middle layers, ReLU 
(Rectified Linear Units) activation function was 
used, with function form: f(x) = max (0, x).  
In the output layer, the softmax activation 
function was used. This function is used in 
classification tasks where classes are mutually 
exclusive. 

The model responsible for selecting the 
chess piece was learned with one million items, 
and the other models were learned with data 
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from about 150 to 200 thousand items.  
The learning took 10 epochs. The piece selection 
model achieved an accuracy of 35.87%. The rest 
of the “to which field” models, depending on the 
type of the piece they dealt with, obtained the 
results shown in Table 1. 

 
Tab. 1. Accuracy of the trained models 

 

Model Accuracy 
King 60.19% 
Queen 40.6% 
Rook 42.48% 
Bishop 50.51% 
Knight 53.72% 
Pawn 49.46% 

 
The models had no prior knowledge of the game 
of chess. It may happen that the move chosen by 
the model is illegal. Especially when the 
situation on the chessboard is related to 
capturing the king. In order to avoid a situation 
where the model chooses an illegal move, a list 
of legal moves is generated beforehand. Each 
move from the list is assigned a value, which is 
the product of the result from the piece selection 
model for the field where the chess piece making 
the move is, and the result from the model of the 
piece standing there for the target field.  
The move with the highest value will be made. 

The models produced give higher values to 
legal moves in most cases. The exception is 
when the side making the move must escape 
mate, the models have not learned this aspect of 
the game. Figure 1 shows an example position 
along with a number that denotes the values 
assigned to the fields by the piece selection 
model. The ranges used: 0.01 – 0.1 (1), 0.21 (2), 
0.47 (3). The remaining fields obtained values 
below 0.01. 

The models are characterized by uneven 
play. On the one hand they make relatively good 
moves, on the other hand they often expose their 
own pieces to capture, fall into the opponent’s 
traps and do not capture the opponent’s 
undefended pieces. At a high level in chess  
a small mistake often results in a lost game, and 
the produced models make them often. It seems 
that with this approach it is impossible to teach  
a model to play chess at a high level. To do so,  
it is essential to analyze the positions in depth 
and to predict the opponent's response. 

In 1997, the Deep Blue computer was able 
to beat the then chess master. The developers of 
Deep Blue do not share all the information about 
the implemented algorithm. However, it is 

known that the algorithm was able to estimate 
about 200 million positions per second and, 
using a mini-max algorithm, select the best 
move. In-depth position analysis and prediction 
of up to a dozen moves ahead resulted in 
defeating a chess grandmaster. The approach 
discussed above lacks prediction of the 
opponent’s response, and from the information 
about the move made for a given position alone, 
the neural network is not able to infer all  
the intentions that went behind the move. 
 

 
Fig. 1. Example item with field value designations 

 
3. Alpha Zero engine 
 
Currently, one of the best chess engines in  
the world is the Alpha Zero program, which is 
based on reinforcement learning and the use of 
the Monte Carlo Tree Search algorithm.  
The program is used in games such as shogi and 
Go, where it has been able to beat the best 
players in the world. 

The basis of Alpha Zero is a neural 
network, which takes as input a representation of 
a position on a chessboard s. The output of  
the network is the value of a given position  
v(s) ∈ [–1, 1]. The value is determined from  
the perspective of the player making the move. 
Values close to 1 indicate an advantage for that 
player, while values close to –1 indicate an 
advantage for the opponent. The second output 
of the network is the policy 𝒑��⃗ (s) which is  
a vector of probabilities of all possible moves.  
Monte-Carlo Tree Search (MCTS) is a decision-
making heuristic mainly used for choosing 
moves in games. In a search tree, each node 
represents a setting on a chessboard. A board 
edge between nodes is a move, after which one 
can move from one setting to the next. 
The nodes hold given values: 
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• Q(s, a) – the expected reward for making 
move a at setting s, 

• N(s, a) – the number of executions of move 
a at setting s during the simulation, 

• P(s, ∙) = 𝒑��⃗ (s) – initial values of move 
execution at setting s based on the policy 
returned by the neural network, 

• cpuct – parameter controlling the degree of 
tree exploration (high value increases the 
frequency of selecting new nodes). 

Based on these values, the upper confidence 
limit U(s, a) can be calculated from the formula: 
 

  U(s, a) = cpuct ∙ P(s, a) ∙ �∑ N(s,b)b
1+N(s,a)           (2) 

 
MCTS is used to improve the policy returned by 
the neural network. It is assumed that for a given 
position, the neural network is unable to find the 
best move without reviewing many positions in 
depth. A single simulation consists of three steps 
(see also Fig. 2): 
• Selection – finding the move a with the 

highest value of the sum of the upper 
confidence limit U(s, a) and the reward 
value Q(s, a). If position s’ (obtained by 
playing a move a at position s) is in the tree, 
then the step for position s’ is repeated until 
a new position is found or a position from 
which a move cannot be made;  

• Branch-off – if position s’ is not in the tree, 
then the position is added to the tree and the 
values P(s’, ∙) = 𝒑��⃗ (s) and v(s’) from the 
neural network and the values Q(s’, a) and 
N(s’, a) as 0 for all moves a are initialized. 
In case the next state cannot be reached 
from the selected node, then a move directly 
to the third step is made; 

• Backward propagation – in the direction of 
the tree root, the values of Q(s, a) are 
updated based on the formula: 

 
  Q′(s, a) = Q(s,a)∙ N(s,a)+ v�s′�

N(s,a)+1
            (3) 

 
If a position from which a move cannot be made 
occurs during the search, instead of the value 
v(s’) calculated by the neural network, there is  
a value of +1 if the game is won by one of the 
parties, and a value of 0 if it ends in a draw. 
Position values are always treated from the 
perspective of the ancestor. Figure 3 shows an 
example Monte Carlo tree, where the color of  
a node indicates the side making the move. 
Assuming that node E is a position that ended in 
a mate (the move belongs to white, i.e., white 
lost), from the perspective of the ancestor 

(node B), it is a node that is worth visiting 
frequently, but for node A, node B leads to  
a loss, so during backward propagation, the 
value of v(s’) after updating Q(s, a) changes to 
the opposite value each time. 

 
 

 
 

Fig. 2. Steps in the Monte Carlo Tree Search 
algorithm 

The condition to complete the simulation 
can be a certain time or a certain number of 
iterations. The move considered best will be  
the move with the highest value indicated by the 
improved stochastic policy 𝝅��⃗ (𝒔). It is calculated 
from the formula: 
 

𝜋�⃗ (𝑠)= N(s,∙)
�∑ N(s,b)b

                     (4) 

 
 

 
 

Fig. 3. Backward value propagation in the MCTS 
algorithm 

 
In order to test the correctness of the algorithm, 
three positions were used in which: 
• whites give a mate in one move, where 

there are two such moves, 
• blacks mate in one move, 
• blacks mate in two moves. 

The values of the positions that the neural 
network should calculate are randomly drawn 
from the range –0.8 to 0.8. 25000 iterations were 
performed in the test. Figure 4 illustrates the 
result of the test for a position in which whites 
can give a mate in two ways: Bf7 and Qf7. 
Below the figures the values of N(s, a) for the 
given position are shown.  



COMPUTER SCIENCE AND MATHEMATICAL MODELLING 13-14 61−69 (2021) 

 65 

 
Fig. 4. Test result for the first position 

 
Positions that lead to a mate are visited 

much more often than the others. By increasing 
the number of iterations the values of N(s, a) 
remain in similar proportions. In position two, 
the move leading to the mate accounts for 80% 
of all choices for the base node. In the third 
position, on the other hand, with a small number 
of iterations, the algorithm will not select with 
significant frequency the movement leading to 
the mate. By increasing the number of iterations, 
once the sequence leading to the mate is found, 
this move starts to be the most frequently chosen 
move in subsequent iterations. 

In this approach, the neural network has the 
task of estimating whether a given position leads 
the side making the move to victory, defeat or  
a draw. The second task of the neural network is 

to return the policy 𝒑��⃗ (s). The data for learning 
the network will be extracted from the games 
played. The algorithm will play against itself, 
recording the position and the refined stochastic 
policy 𝝅��⃗ (𝒔) at each move. After a game is 
played, the data set will be expanded to include 
the reward value z. All reward values for a set 
containing a position where the move is made by 
the side winning the game will be 1. In case of  
a loss the value will be –1. If the game ends in  
a draw, then regardless of the side making the 
move, the reward value of all positions will be 0. 
It is worth noting that in a duel both networks 
play the same number of games as white and 
black. The next step is to train the model on  
the basis of the data obtained from the played 
games and check whether the training has had 
the desired effect. The network that wins at least 
55% of the games played becomes the best 
network. This method produces an infinite 
amount of data that can be used to teach a neural 
network.  

In the learning process, the cost function is 
the sum of two components: 
• policy cost function (categorical cross 

entropy), 
• cost function of the item value (mean 

squared error). 
Each move in the learning process is 

obtained based on 800 iterations. In order to 
speed up the games played, the subtree 
containing the selected move is used when 
searching for the next move. This occurs only 
when playing one model against itself. When 
comparing models, such solutions would lead to 
unreliable results. 

As mentioned before, one set of data 
necessary in the learning process has the 
following form (s, 𝝅��⃗ (𝒔), z). The representation 
of the setting on the chessboard and the policy 
require prior normalization: 
• s – the representation of the setting on the 

chessboard will consist of a 16 x 8 x 8 
array.  
It can be divided into two components: 
o chess pieces (12 x 8 x 8) – each 8 x 8 

array refers to the type of piece and the 
field on which it is placed. The 1 is 
located at positions that correspond to 
the piece type and the field on which it 
stands. The position is always shown 
from the perspective of the side 
making the move, i.e. when black 
makes a move, the board is reversed on 
the basis of the reflection with respect 
to the line between the fourth and the 
fifth row of the board; 
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o castling rights (4 x 8 x 8) – an 8 x 8 
array, where the fields of the array are 
filled with ones when a given side has 
castling rights, otherwise the array is 
filled with zeros.  
The arrays refer, respectively, to: short 
castling of the side making the move, 
long castling of the side making the 
move, short castling of the opposing 
side, long castling of the opposing 
side; 

• 𝝅��⃗ (𝒔) – the policy is in the form of a list 
with length corresponding to the number of 
moves possible at position s. The neural 
network requires a fixed size for the output 
data, so its size will be 4096 (the number of 
possible moves “from the field”  times the 
number of possible moves “to the field”). 
The various options for promoting the pawn 
have been omitted. In the MCTS algorithm, 
the policy value for the pawn move on the 
last row will be equal for all pawn 
promotion options. An array of 4096 zeros 
will be generated during normalization.  
The cells with the index “from which field”  
times 64 + “to which field” will take  
the value from 𝝅��⃗ (𝒔) corresponding to that 
move. If blacks makes a move, then the 
field numbers refer to other moves. Figure 5 
on the left shows the position with the 
possible move of the knight from B8 to C6. 
This move refers to index numbers 1  
and 18. On the right the reflected position is 
shown. To make sure that blackʼs moves 
correspond to the actual situation on the 
chessboard, an array with the following 
values has been used: [56, 40, 24, 8, –8,  
–24, –40, –56]. Each value in the array 
refers to a row on the chessboard, starting 
from the eighth row. The corresponding 
value from the array is added to the field 
index number. 

 

 
Fig. 5. Perspective of representation of positions 

relative to blacks 

 
In the initial phase of the learning process,  
the policy returned by the neural network will 

often give non-zero values to illegal movements. 
The softmax function returns items whose values 
sum to one. The policy values assigned to all 
legal moves in an item must sum to one. For this 
purpose, before assigning policy values to 
individual nodes, these values are first summed. 
Then, each nodeʼs policy value is calculated as 
the quotient of the value returned by the neural 
network and the sum of the policy values of all 
legal moves. 

The neural network model was built using 
the keras library. The following layers were used 
in the implementation: 
• Conv2D – convolutional layer, which is 

used in processing two-dimensional images. 
The position on the chessboard is treated as 
an image with dimensions of 8 x 8 and 16 
channels (12 – types of chess pieces,  
4 – castling rights); 

• BatchNormalization – applies  
a transformation that keeps the mean 
activation close to 0 and the standard 
deviation of the activation close to 1; 

• Activation (ReLU) – layer that processes 
received data in accordance with the 
established activation function; 

• Add – layer that receives on input 2 data 
sets of the same size and on output returns  
a data set as a sum of individual elements; 

• Flatten – layer which processes data in the 
form of tensor of n dimensions into tensor 
of one dimension; 

• Dense – standard layer used in neural 
networks, where each neuron in the layer 
receives on input data from each output of 
the previous layer. 
Fig. 6 shows a layout of the neural network 

model used in this approach. The data that is the 
position representation becomes the input data of 
the neural network. The layer block indicated by 
the blue rectangle is repeated 7 times in the 
model. The model at the end splits into two 
outputs: the value output (on the left) and the 
policy output (on the right). The value output at 
the end has a tanh activation function that 
assumes values f(x) ∈ [–1, 1]. The output of the 
policy  ends with a softmax function. 

During the training of the neural network, 
the matches played must be different to some 
extent. Without additional modifications,  
the MCTS algorithm with the neural network 
would always play the same game – or two 
games, in case of swapping sides. During a duel 
between two models, it is important to provide 
training data from different games without 
significantly interfering with the level of play of 
a given model.   
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Fig. 6. Schematic of the neural network model

InputLayer 
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For this purpose, the direct descendants of the 
base node have the value P(s, a) modified  
as follows:  
 

P’(s, a) = (1 - ε) ∙ P(s, a) + ε ∙ ηa         (5) 
 
The vector η has a length equal to the number of 
possible moves at a given position. The elements 
of this array sum to a value of 1, and their 
distribution depends on the parameter α.  
A parameter α close to infinity leads to  
a uniform distribution, while the parameter α 
close to zero leads to an array of only zeros and 
a single one. The value of the parameter α is 0.3, 
and the value of ε used above is 0.25. 
Additionally, Dirichlet noise with enough 
simulations ensures that all direct descendants of 
the base node are visited at least once. 

Prior to the main training, the model was 
taught using 120,000 positions derived from 
games played by chess engines. The policy was 
encoded with zeros and ones corresponding to 
the move selected. This was followed by a duel 
between the taught model (M1) and a new model 
(M0), where M1 won 17 games and tied 3.  
The next step was to collect self-play data for 
about 24 hours. During this time, 17,000 data 
sets were collected and used to learn the model. 
As a result of training the M1 model on the data 
obtained, the M2 model was obtained. The M2 
model won 12 games, lost 2, and tied 6. In the 
algorithm, most of the time (over 90%) is 
occupied by the operations related to the use of 
the model. For better results, one can use the 
computing power from the graphics card or 
collect data using multiple computers 
simultaneously.  

Alpha Zero developers used the 5000 TPU 
(Tensor Processing Unit) of the first generation 
for self-game and 64 TPU of the second 
generation to train the model. Such hardware 
allowed 44 million games to be played at 800 
simulations per move in 9 hours. After this time, 
Alpha Zero faced one of the best chess engines – 
Stockfish. Alpha Zero won 25 games and tied 25 
when playing white, while when playing black  
it won 3 and tied the remaining 47.  

 
4. Conclusions 
 
The purpose of this study was to analyze and 
implement machine learning methods for their 
usefulness in teaching a computer to play chess. 
The first chapter included a description of the 
rules of chess and how to record the flow of  
the game and record positions, which were 
useful in subsequent chapters. Two methods for 

teaching a computer to play chess were 
discussed in the work: the first based on played 
games, the results of which show that finding  
a good move based solely on the position on the 
chessboard is not possible without a deeper 
analysis of the position. The best chess engines, 
both the classical ones and those based on neural 
networks, come down to searching positions in 
depth, assuming that the opponent will always 
choose the best move for himself. The second 
method resembles the process of choosing  
a move by a human, who intuitively selects for 
analysis sequences of moves that he thinks are 
worth attention. A significant advantage of 
Alpha Zero is its good scalability with 
computational power compared to classical 
engines, which have exponential computational 
complexity [5]. Another advantage is the 
possibility of continuous improvement of  
the game level. Due to the lack of limitations, 
each successive model can be better than the 
previous one. Disadvantages of Alpha Zero 
include the need for good hardware, which is 
necessary both to generate training data and to 
measure game level. The long game play time 
made it difficult to test the algorithm. Finding an 
error often required the program to run for 
several hours. The implementation also included 
a graphical user interface that enabled the game 
to be played and facilitated the testing of  
the algorithm through the ability to enter and 
modify positions. 
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W pracy zaprezentowano metody wykorzystania uczenia maszynowego do nauki komputera gry w szachy. 
Pierwsza metoda bazuje na użyciu zapisów przebiegów partii rozgrywanych przez wysoko klasyfikowanych 
graczy, zaś druga opiera się na algorytmie Monte Carlo Tree Search oraz uczeniu przez wzmacnianie. 
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