
COMPUTER SCIENCE AND MATHEMATICAL MODELLING 13-14 61−69 (2021)

 61

Machine learning methods in game of chess implementation

P. WÓJCIK1), J. WIŚNIEWSKA2)

p.wojcik95@outlook.com, joanna.wisniewska@wat.edu.pl

1) Narwik St. 17A/3, 01-471 Warsaw, Poland
2) Military University of Technology, Faculty of Cybernetics

Kaliskiego St. 2, 00-908 Warsaw, Poland

The following work presents methods of using machine learning to teach a computer to play chess. The first
method is based on using records of games played by highly ranked players. The second method is based on
the Monte Carlo Tree Search algorithm and reinforcement learning.

Keywords: chess, machine learning, neural networks.

DOI: 10.5604/01.3001.0015.9191

1. Introduction

Chess is one of the most popular board games in
the world. The multitude of tactics and strategies
reduces the repetitiveness of the games played,
making them unique. The “royal game” has been
an object of interest for programmers since the
beginning of the existence of computers [1].
At first programs were implemented to play the
game for two people, later programs were able to
compete with a man. Due to the large number of
possible moves the chess engines of those days
were not able to match the best chess players in
the world. In recent years, machine learning has
played an important role in the development of
chess engines. Classical engines based on
minimax algorithm had to give way to engines
based on machine learning.

This paper presents two approaches for
teaching a computer to play chess. The first
method is based on a neural network model
[2, 6, 8] that will be able to return the best move
based on data representing a chess position [3].
The second method involves a Monte Carlo Tree
Search algorithm and a neural network model
that assists in the process of selecting branches
in the tree and evaluates the chess position [5].

2. Approach based on the use of

played games

One method of machine learning for teaching
a computer to play chess is to use a collection of
chess positions and moves made by chess
masters. In this method, the moves made from
the dataset are assumed to be optimal.

To teach an artificial neural network, a set
of input data and a set of output data are needed.
In the method presented here, the input data set
is the numbers which are the representation of
the setting of the pieces on the chessboard.
The online chess service Lichess provides
monthly data from the games played in the last
month. Each game contains metadata
concerning, among others, playersʼ ranking and
the course of the game itself in the form of chess
algebraic notation. In the learning process one
should use games of players with high ranking in
order to minimize the number of weak moves.
The position is represented as a sequence of 384
numbers. This sequence consists of 6 strings of
64 numbers for each type of chess piece. Each
position in the sequence relates to a specific field
on the chessboard. The number in the first
position in the sequence concerns the field A8
(upper left corner of the board), and the number
in the last position concerns the field H1 (lower
right corner of the board from the perspective of
the player using white chess pieces, according to
the Forsyth–Edwards notation [9]). The numbers
in the sequence take 3 values:
• 1 – if there is a particular type of chess piece

on the field belonging to the side making
the move,

• 0 – if there is no piece on the field or a piece
of a different type,

• –1 – if there is a piece of a particular type on
the field belonging to the opposite side.

If black makes a move in a given position, the
numbers in the sequence refer to the fields in
reverse order, i.e. starting with H1 and ending
with A8. The output is a sequence of zeros and

mailto:joanna.wisniewska@wat.edu.pl

Paweł Wójcik, Joanna Wiśniewska, Machine learning methods in game of chess implementation

 62

a single one at the position corresponding to the
field. The position in the sequence corresponds
to the fields in the order from A8 to H1. The
solution uses two types of models; in one the
output is for the field from which the player
made the move, in the other it is for the field to
which the move was made.

In each position without verifying that the
move is legal, and ignoring the various
possibilities for promoting the pawn, there are
4096 possible moves, 64 possibilities from
which field the move is made, and – for each of
these options – 64 possibilities of the field to
which the move is made. Therefore, this problem
requires the use of several models. The first
model is responsible for choosing which chess
piece is moved. The next six models (a different
model for each piece type) will indicate on
which field it is best to place the piece of a given
type. The move considered the best will be the
one with the highest value of the product of
“from which field” and, depending on what kind
of a piece is on that field, the value from a given
model “to which field”.

The online chess service Lichess provides
the run of games recorded in chess algebraic
notation. Data preparation requires the
implementation of a converter that converts
the move notation into two values: from which
field the move was made and to which field
the move was made. In the implementation,
fields are specified by numeric values from 0
to 63, starting at field A8 and ending at H1.
Movements will be stored in the form (“from
which field”, “to which field”). The
determination of the numerical value of the field
designation is obtained from the formula:

f(w, k) = 8 * (w – 1) + a – 97 (1)

The check “+” and checkmate “#” notations are
omitted because they do not affect the
determination of fields. Moves in notation can
be divided into three categories, given below:
• Figure moves – notation begins with one of

the letters: K (king), Q (queen), R (rook),
B (bishop), N (knight). In order to convert
a notation into a move, all legal moves for
all the pieces of a given type must be
generated. The field occupied by the figure
making the move to a field will be the value
“from which field” in the notation.
If a column and/or row description is also
given in the notation, then figures not in
that row and/or column are excluded.
The “to which field” value is obtained by

substituting the field notation contained in
the move notation;

• Castling – marked “O-O” or “O-O-O”,
Information about the side making the
move is sufficient to determine the fields
associated with the move. For whites, short
castling is move (60, 62), long castling (60,
58), while for black, short castling is (4, 6)
and long castling is (4, 2);

• Pawn moves – the notation doesn’t start
with a letter characterizing the figures.
If the pawn move is not capturing, then
the first two symbols indicate the value of
“to which field”. The value “from which
field” is obtained by checking which pawn
can move there. If the movement of a pawn
is a capture, then the movement notation
also contains the column which the pawn
moves from. The value “from which field”
is obtained from the field from which the
pawn in that column can move to the field
in the notation. Additionally, when a pawn
moves to the last row, the move notation
contains information about the piece the
pawn will change into. When making
a move, the promotion option is taken into
account.
After converting the notation into two

numerical values of the move and the potential
option of the pawn promotion, it is possible to
make a move on the chessboard. Before
the move is made, the current state on
the chessboard is converted into input data.
In the model responsible for selecting a chess
piece, the output consists of 64 zeros and
a single one in the place corresponding to the
value “from which field”. Then, depending on
the type of chess piece that the move is made
with, the input data for this model is identical to
that of the piece selection model. The output
data, on the other hand, has the same format as
in the piece selection model, except that a single
one is in the place corresponding to the value
“to which field”.

Each of the seven models mentioned earlier
has the same structure. The models consist of
three hidden layers, one with 32 neurons and two
with 128 neurons. In the middle layers, ReLU
(Rectified Linear Units) activation function was
used, with function form: f(x) = max (0, x).
In the output layer, the softmax activation
function was used. This function is used in
classification tasks where classes are mutually
exclusive.

The model responsible for selecting the
chess piece was learned with one million items,
and the other models were learned with data

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 13-14 61−69 (2021)

 63

from about 150 to 200 thousand items.
The learning took 10 epochs. The piece selection
model achieved an accuracy of 35.87%. The rest
of the “to which field” models, depending on the
type of the piece they dealt with, obtained the
results shown in Table 1.

Tab. 1. Accuracy of the trained models

Model Accuracy
King 60.19%
Queen 40.6%
Rook 42.48%
Bishop 50.51%
Knight 53.72%
Pawn 49.46%

The models had no prior knowledge of the game
of chess. It may happen that the move chosen by
the model is illegal. Especially when the
situation on the chessboard is related to
capturing the king. In order to avoid a situation
where the model chooses an illegal move, a list
of legal moves is generated beforehand. Each
move from the list is assigned a value, which is
the product of the result from the piece selection
model for the field where the chess piece making
the move is, and the result from the model of the
piece standing there for the target field.
The move with the highest value will be made.

The models produced give higher values to
legal moves in most cases. The exception is
when the side making the move must escape
mate, the models have not learned this aspect of
the game. Figure 1 shows an example position
along with a number that denotes the values
assigned to the fields by the piece selection
model. The ranges used: 0.01 – 0.1 (1), 0.21 (2),
0.47 (3). The remaining fields obtained values
below 0.01.

The models are characterized by uneven
play. On the one hand they make relatively good
moves, on the other hand they often expose their
own pieces to capture, fall into the opponent’s
traps and do not capture the opponent’s
undefended pieces. At a high level in chess
a small mistake often results in a lost game, and
the produced models make them often. It seems
that with this approach it is impossible to teach
a model to play chess at a high level. To do so,
it is essential to analyze the positions in depth
and to predict the opponent's response.

In 1997, the Deep Blue computer was able
to beat the then chess master. The developers of
Deep Blue do not share all the information about
the implemented algorithm. However, it is

known that the algorithm was able to estimate
about 200 million positions per second and,
using a mini-max algorithm, select the best
move. In-depth position analysis and prediction
of up to a dozen moves ahead resulted in
defeating a chess grandmaster. The approach
discussed above lacks prediction of the
opponent’s response, and from the information
about the move made for a given position alone,
the neural network is not able to infer all
the intentions that went behind the move.

Fig. 1. Example item with field value designations

3. Alpha Zero engine

Currently, one of the best chess engines in
the world is the Alpha Zero program, which is
based on reinforcement learning and the use of
the Monte Carlo Tree Search algorithm.
The program is used in games such as shogi and
Go, where it has been able to beat the best
players in the world.

The basis of Alpha Zero is a neural
network, which takes as input a representation of
a position on a chessboard s. The output of
the network is the value of a given position
v(s) ∈ [–1, 1]. The value is determined from
the perspective of the player making the move.
Values close to 1 indicate an advantage for that
player, while values close to –1 indicate an
advantage for the opponent. The second output
of the network is the policy 𝒑��⃗ (s) which is
a vector of probabilities of all possible moves.
Monte-Carlo Tree Search (MCTS) is a decision-
making heuristic mainly used for choosing
moves in games. In a search tree, each node
represents a setting on a chessboard. A board
edge between nodes is a move, after which one
can move from one setting to the next.
The nodes hold given values:

Paweł Wójcik, Joanna Wiśniewska, Machine learning methods in game of chess implementation

 64

• Q(s, a) – the expected reward for making
move a at setting s,

• N(s, a) – the number of executions of move
a at setting s during the simulation,

• P(s, ∙) = 𝒑��⃗ (s) – initial values of move
execution at setting s based on the policy
returned by the neural network,

• cpuct – parameter controlling the degree of
tree exploration (high value increases the
frequency of selecting new nodes).

Based on these values, the upper confidence
limit U(s, a) can be calculated from the formula:

 U(s, a) = cpuct ∙ P(s, a) ∙ �∑ N(s,b)b
1+N(s,a) (2)

MCTS is used to improve the policy returned by
the neural network. It is assumed that for a given
position, the neural network is unable to find the
best move without reviewing many positions in
depth. A single simulation consists of three steps
(see also Fig. 2):
• Selection – finding the move a with the

highest value of the sum of the upper
confidence limit U(s, a) and the reward
value Q(s, a). If position s’ (obtained by
playing a move a at position s) is in the tree,
then the step for position s’ is repeated until
a new position is found or a position from
which a move cannot be made;

• Branch-off – if position s’ is not in the tree,
then the position is added to the tree and the
values P(s’, ∙) = 𝒑��⃗ (s) and v(s’) from the
neural network and the values Q(s’, a) and
N(s’, a) as 0 for all moves a are initialized.
In case the next state cannot be reached
from the selected node, then a move directly
to the third step is made;

• Backward propagation – in the direction of
the tree root, the values of Q(s, a) are
updated based on the formula:

 Q′(s, a) = Q(s,a)∙ N(s,a)+ v�s′�

N(s,a)+1
 (3)

If a position from which a move cannot be made
occurs during the search, instead of the value
v(s’) calculated by the neural network, there is
a value of +1 if the game is won by one of the
parties, and a value of 0 if it ends in a draw.
Position values are always treated from the
perspective of the ancestor. Figure 3 shows an
example Monte Carlo tree, where the color of
a node indicates the side making the move.
Assuming that node E is a position that ended in
a mate (the move belongs to white, i.e., white
lost), from the perspective of the ancestor

(node B), it is a node that is worth visiting
frequently, but for node A, node B leads to
a loss, so during backward propagation, the
value of v(s’) after updating Q(s, a) changes to
the opposite value each time.

Fig. 2. Steps in the Monte Carlo Tree Search
algorithm

The condition to complete the simulation
can be a certain time or a certain number of
iterations. The move considered best will be
the move with the highest value indicated by the
improved stochastic policy 𝝅��⃗ (𝒔). It is calculated
from the formula:

𝜋�⃗ (𝑠)= N(s,∙)
�∑ N(s,b)b

 (4)

Fig. 3. Backward value propagation in the MCTS
algorithm

In order to test the correctness of the algorithm,
three positions were used in which:
• whites give a mate in one move, where

there are two such moves,
• blacks mate in one move,
• blacks mate in two moves.

The values of the positions that the neural
network should calculate are randomly drawn
from the range –0.8 to 0.8. 25000 iterations were
performed in the test. Figure 4 illustrates the
result of the test for a position in which whites
can give a mate in two ways: Bf7 and Qf7.
Below the figures the values of N(s, a) for the
given position are shown.

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 13-14 61−69 (2021)

 65

Fig. 4. Test result for the first position

Positions that lead to a mate are visited

much more often than the others. By increasing
the number of iterations the values of N(s, a)
remain in similar proportions. In position two,
the move leading to the mate accounts for 80%
of all choices for the base node. In the third
position, on the other hand, with a small number
of iterations, the algorithm will not select with
significant frequency the movement leading to
the mate. By increasing the number of iterations,
once the sequence leading to the mate is found,
this move starts to be the most frequently chosen
move in subsequent iterations.

In this approach, the neural network has the
task of estimating whether a given position leads
the side making the move to victory, defeat or
a draw. The second task of the neural network is

to return the policy 𝒑��⃗ (s). The data for learning
the network will be extracted from the games
played. The algorithm will play against itself,
recording the position and the refined stochastic
policy 𝝅��⃗ (𝒔) at each move. After a game is
played, the data set will be expanded to include
the reward value z. All reward values for a set
containing a position where the move is made by
the side winning the game will be 1. In case of
a loss the value will be –1. If the game ends in
a draw, then regardless of the side making the
move, the reward value of all positions will be 0.
It is worth noting that in a duel both networks
play the same number of games as white and
black. The next step is to train the model on
the basis of the data obtained from the played
games and check whether the training has had
the desired effect. The network that wins at least
55% of the games played becomes the best
network. This method produces an infinite
amount of data that can be used to teach a neural
network.

In the learning process, the cost function is
the sum of two components:
• policy cost function (categorical cross

entropy),
• cost function of the item value (mean

squared error).
Each move in the learning process is

obtained based on 800 iterations. In order to
speed up the games played, the subtree
containing the selected move is used when
searching for the next move. This occurs only
when playing one model against itself. When
comparing models, such solutions would lead to
unreliable results.

As mentioned before, one set of data
necessary in the learning process has the
following form (s, 𝝅��⃗ (𝒔), z). The representation
of the setting on the chessboard and the policy
require prior normalization:
• s – the representation of the setting on the

chessboard will consist of a 16 x 8 x 8
array.
It can be divided into two components:
o chess pieces (12 x 8 x 8) – each 8 x 8

array refers to the type of piece and the
field on which it is placed. The 1 is
located at positions that correspond to
the piece type and the field on which it
stands. The position is always shown
from the perspective of the side
making the move, i.e. when black
makes a move, the board is reversed on
the basis of the reflection with respect
to the line between the fourth and the
fifth row of the board;

Paweł Wójcik, Joanna Wiśniewska, Machine learning methods in game of chess implementation

 66

o castling rights (4 x 8 x 8) – an 8 x 8
array, where the fields of the array are
filled with ones when a given side has
castling rights, otherwise the array is
filled with zeros.
The arrays refer, respectively, to: short
castling of the side making the move,
long castling of the side making the
move, short castling of the opposing
side, long castling of the opposing
side;

• 𝝅��⃗ (𝒔) – the policy is in the form of a list
with length corresponding to the number of
moves possible at position s. The neural
network requires a fixed size for the output
data, so its size will be 4096 (the number of
possible moves “from the field” times the
number of possible moves “to the field”).
The various options for promoting the pawn
have been omitted. In the MCTS algorithm,
the policy value for the pawn move on the
last row will be equal for all pawn
promotion options. An array of 4096 zeros
will be generated during normalization.
The cells with the index “from which field”
times 64 + “to which field” will take
the value from 𝝅��⃗ (𝒔) corresponding to that
move. If blacks makes a move, then the
field numbers refer to other moves. Figure 5
on the left shows the position with the
possible move of the knight from B8 to C6.
This move refers to index numbers 1
and 18. On the right the reflected position is
shown. To make sure that blackʼs moves
correspond to the actual situation on the
chessboard, an array with the following
values has been used: [56, 40, 24, 8, –8,
–24, –40, –56]. Each value in the array
refers to a row on the chessboard, starting
from the eighth row. The corresponding
value from the array is added to the field
index number.

Fig. 5. Perspective of representation of positions

relative to blacks

In the initial phase of the learning process,
the policy returned by the neural network will

often give non-zero values to illegal movements.
The softmax function returns items whose values
sum to one. The policy values assigned to all
legal moves in an item must sum to one. For this
purpose, before assigning policy values to
individual nodes, these values are first summed.
Then, each nodeʼs policy value is calculated as
the quotient of the value returned by the neural
network and the sum of the policy values of all
legal moves.

The neural network model was built using
the keras library. The following layers were used
in the implementation:
• Conv2D – convolutional layer, which is

used in processing two-dimensional images.
The position on the chessboard is treated as
an image with dimensions of 8 x 8 and 16
channels (12 – types of chess pieces,
4 – castling rights);

• BatchNormalization – applies
a transformation that keeps the mean
activation close to 0 and the standard
deviation of the activation close to 1;

• Activation (ReLU) – layer that processes
received data in accordance with the
established activation function;

• Add – layer that receives on input 2 data
sets of the same size and on output returns
a data set as a sum of individual elements;

• Flatten – layer which processes data in the
form of tensor of n dimensions into tensor
of one dimension;

• Dense – standard layer used in neural
networks, where each neuron in the layer
receives on input data from each output of
the previous layer.
Fig. 6 shows a layout of the neural network

model used in this approach. The data that is the
position representation becomes the input data of
the neural network. The layer block indicated by
the blue rectangle is repeated 7 times in the
model. The model at the end splits into two
outputs: the value output (on the left) and the
policy output (on the right). The value output at
the end has a tanh activation function that
assumes values f(x) ∈ [–1, 1]. The output of the
policy ends with a softmax function.

During the training of the neural network,
the matches played must be different to some
extent. Without additional modifications,
the MCTS algorithm with the neural network
would always play the same game – or two
games, in case of swapping sides. During a duel
between two models, it is important to provide
training data from different games without
significantly interfering with the level of play of
a given model.

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 13-14 61−69 (2021)

 67

Fig. 6. Schematic of the neural network model

InputLayer

Paweł Wójcik, Joanna Wiśniewska, Machine learning methods in game of chess implementation

 68

For this purpose, the direct descendants of the
base node have the value P(s, a) modified
as follows:

P’(s, a) = (1 - ε) ∙ P(s, a) + ε ∙ ηa (5)

The vector η has a length equal to the number of
possible moves at a given position. The elements
of this array sum to a value of 1, and their
distribution depends on the parameter α.
A parameter α close to infinity leads to
a uniform distribution, while the parameter α
close to zero leads to an array of only zeros and
a single one. The value of the parameter α is 0.3,
and the value of ε used above is 0.25.
Additionally, Dirichlet noise with enough
simulations ensures that all direct descendants of
the base node are visited at least once.

Prior to the main training, the model was
taught using 120,000 positions derived from
games played by chess engines. The policy was
encoded with zeros and ones corresponding to
the move selected. This was followed by a duel
between the taught model (M1) and a new model
(M0), where M1 won 17 games and tied 3.
The next step was to collect self-play data for
about 24 hours. During this time, 17,000 data
sets were collected and used to learn the model.
As a result of training the M1 model on the data
obtained, the M2 model was obtained. The M2
model won 12 games, lost 2, and tied 6. In the
algorithm, most of the time (over 90%) is
occupied by the operations related to the use of
the model. For better results, one can use the
computing power from the graphics card or
collect data using multiple computers
simultaneously.

Alpha Zero developers used the 5000 TPU
(Tensor Processing Unit) of the first generation
for self-game and 64 TPU of the second
generation to train the model. Such hardware
allowed 44 million games to be played at 800
simulations per move in 9 hours. After this time,
Alpha Zero faced one of the best chess engines –
Stockfish. Alpha Zero won 25 games and tied 25
when playing white, while when playing black
it won 3 and tied the remaining 47.

4. Conclusions

The purpose of this study was to analyze and
implement machine learning methods for their
usefulness in teaching a computer to play chess.
The first chapter included a description of the
rules of chess and how to record the flow of
the game and record positions, which were
useful in subsequent chapters. Two methods for

teaching a computer to play chess were
discussed in the work: the first based on played
games, the results of which show that finding
a good move based solely on the position on the
chessboard is not possible without a deeper
analysis of the position. The best chess engines,
both the classical ones and those based on neural
networks, come down to searching positions in
depth, assuming that the opponent will always
choose the best move for himself. The second
method resembles the process of choosing
a move by a human, who intuitively selects for
analysis sequences of moves that he thinks are
worth attention. A significant advantage of
Alpha Zero is its good scalability with
computational power compared to classical
engines, which have exponential computational
complexity [5]. Another advantage is the
possibility of continuous improvement of
the game level. Due to the lack of limitations,
each successive model can be better than the
previous one. Disadvantages of Alpha Zero
include the need for good hardware, which is
necessary both to generate training data and to
measure game level. The long game play time
made it difficult to test the algorithm. Finding an
error often required the program to run for
several hours. The implementation also included
a graphical user interface that enabled the game
to be played and facilitated the testing of
the algorithm through the ability to enter and
modify positions.

5. Bibliography

[1] Herud K., Mueller C., “End-to-End Deep

Neural Network for Automatic Learning in
Chess”, International Journal of Computer
Theory and Engineering, Vol. 10, No. 5,
146–151 (2018).

[2] Kosiński R., Sztuczne sieci neuronowe:
Dynamika nieliniowa i chaos,
Wydawnictwo Naukowe PWN, Warszawa
2020.

[3] Oshri B., Khandwala N., Predicting Moves
in Chess using Convolutional Neural
Networks,
http://cs231n.stanford.edu/reports/2015/pdfs
/ConvChess.pdf.

[4] Silver D., et al, “Mastering the game of Go
without human knowledge”, Nature, 550,
354–359 (2017).

[5] Silver D. et al., Mastering Chess and Shogi
by Self-Play with a General Reinforcement
Learning Algorithm,
https://arxiv.org/pdf/1712.01815.pdf.

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 13-14 61−69 (2021)

 69

[6] Wantoch-Rekowski R., Sieci neuronowe
w zadaniach: perceptron wielowarstwowy,
Bel Studio, Warszawa 2003.

[7] Wójcik P., Metody uczenia maszynowego
w implementacji gry w szachy, Warszawa
2020.

[8] Zocca V., et al., Deep Learning. Uczenie
głębokie z językiem Python. Sztuczna
inteligencja i sieci neuronowe, Helion,
Gliwice 2018.

[9] Forsyth–Edwards Notation [@]
https://en.wikipedia.org/wiki/Forsyth%E2%
80%93Edwards_Notation

Metody uczenia maszynowego w implementacji gry w szachy

P. WÓJCIK, J. WIŚNIEWSKA

W pracy zaprezentowano metody wykorzystania uczenia maszynowego do nauki komputera gry w szachy.
Pierwsza metoda bazuje na użyciu zapisów przebiegów partii rozgrywanych przez wysoko klasyfikowanych
graczy, zaś druga opiera się na algorytmie Monte Carlo Tree Search oraz uczeniu przez wzmacnianie.

Słowa kluczowe: szachy, uczenie maszynowe, sieci neuronowe.

This work was financed by Military University of Technology under research project UGB no 860 /2021.

