Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | Vol. 71, no. 5 | 2545--2561
Tytuł artykułu

Exploring potential impacts of climatic variability on production of maize in Pakistan using ARDL approach

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Every economic sector in the world is threatened by climate change, but the agricultural sector is especially vulnerable because of its strong dependence. That is the way this study aims to introduce the causal dynamic interactions of a vital maize food crop, fertilizer consumption as a non-climate factor, and meteorological factors in the provinces of Pakistan. The breakpoint unit root tests achieve the validity of variable stationary properties. Constant variation is imposed to demonstrate the long- and short-run autoregressive distributed lag (ARDL) approach, which is covered by the use of quarterly data from the years 2000 to 2020. The results reveal that fertilizer consumption substantially influences maize production in Punjab and Khyber Pakhtunkhwa; except for Sindh, it exhibits a negative connection. In Punjab and Khyber Pakhtunkhwa, maize production is negatively linked with air temperature, whereas Balochistan illustrates a significant positive association. Long-term analysis noticed that the production of maize, a staple food crop, is significantly and favorably correlated with evapotranspiration in the province. At the same time, relative humidity demonstrates no relationship with maize crops in overall provinces. Rainfall over the long term shows an unfavorable and robust relationship with maize production in Pakistan’s provinces. Throughout Punjab, air temperature and relative humidity have more of an effect over the long and short terms, respectively. The fertilizer strongly influences the province of Sindh in the long run, while maize is more sensitive to air temperature in the short term. In Khyber Pakhtunkhwa, evapotranspiration and Balochistan’s air temperature greatly influence maize crops in the short and long term. Based on scientific evidence, inventing applicable agricultural-specific policy is made for farmers with the resilience to deal with climate influence. Significant food crop quality that can withstand increased temperatures and rainfall should be the focus of agricultural innovation and research to ensure long-term production and distribution efficiency.
Wydawca

Czasopismo
Rocznik
Strony
2545--2561
Opis fizyczny
Bibliogr. 84 poz., rys., tab.
Twórcy
autor
  • Department of Dr. Hasan Murad School of Management, University of Management and Technology, Lahore, Pakistan
  • Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan, salmantariq_pu@yahoo.com
  • Department of Space Science, University of the Punjab, Lahore, Pakistan
  • Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan
  • University of Management and Technology, Lahore, Pakistan
autor
  • Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan
  • Department of Space Science, University of the Punjab, Lahore, Pakistan
Bibliografia
  • 1. Abbas F (2013) Analysis of a historical (1981–2010) temperature record of the Punjab province of Pakistan. Earth Interact 17(15):1–23. https://doi.org/10.1175/2013EI000528.1
  • 2. Abbas G, Ahmad S, Ahmad A, Nasim W, Fatima Z, Hussain S, Habib M, Azam M (2017) Quantification of the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agric for Meteorol 247(7):42–55. https://doi.org/10.1016/j.agrformet.2017.07.012
  • 3. Abubakar SM (2020) Pakistan 5th most vulnerable country to climate change, reveals Germanwatch report. Dawn, Karachi
  • 4. Ahmed MN, Schmitz M (2011) Economic assessment of the impact of climate change on the agriculture of Pakistan. Bus Econ Horiz (BEH) 4(1):1–12. https://doi.org/10.22004/ag.econ.204181
  • 5. AL-Aaty YHS, Al-Jomaily ARA (2021) Effect of variety and humidity on the loss of maize crop after shelling in shelling and drying factories of maize (Zea mays) in Iraq. Earth Environ Sci 735(1):012029. https://doi.org/10.1088/1755-1315/735/1/012029
  • 6. Ali N, Ahmad I (2015) Trend analysis of precipitation data in Pakistan. Sci Int 27(1):803–808
  • 7. Ammani AA, Ja AK, Aliyu JA, Arab AI (2012) Climate change and maize production: empirical evidence from Kaduna state, Nigeria. J Agric Ext 16(1):1–8. https://doi.org/10.4314/jae.v16i1.1
  • 8. Amponsah L, Hoggar GK, Asuamah SY (2015) Climate change and agriculture: modelling the impact of carbon dioxide emission on cereal yield in Ghana. Munich Pers RePEc Arch 68051:1–12
  • 9. Anwar A, Younis M, Ullah I (2020) Impact of urbanization and economic growth on CO2 emission: a case of far East Asian countries. Int J Environ Res Public Health 17:2531. https://doi.org/10.3390/ijerph17072531
  • 10. Aragón FM, Oteiza F, Feb GN (2021) Climate change and agriculture: subsistence farmers’ response to extreme heat. Am Econ J Econ Policy. https://doi.org/10.1257/pol.20190316
  • 11. Awan AG, Yaseen G (2017) Global climate change and its impact on agriculture sector in Pakistan. Am J Trade Policy 4(3):109–116. https://doi.org/10.18034/ajtp.v4i3.425
  • 12. Cabezas JM, Ruiz-Ramos M, Soriano MA, Gabaldón-Leal C, Santos C, Lorite IJ (2020) Identifying adaptation strategies to climate change for Mediterranean olive orchards using impact response surfaces. Agric Syst 12(185):102937. https://doi.org/10.1016/j.agsy.2020.102937
  • 13. Chandio AA, Jiang Y, Rehman A, Dunya R (2018) The linkage between fertilizer consumption and rice production: empirical evidence from Pakistan. AIMS Agric Food 3(3):295–305. https://doi.org/10.3934/agrfood.2018.3.295
  • 14. Chandio AA, Jiang Y, Rauf A, Mirani AA, Shar RU, Ahmad F, Shehzad K (2019) Does energy-growth and environment quality matter for agriculture sector in Pakistan or not ? Appl Cointegration Approach Energ 12(10):1879. https://doi.org/10.3390/en12101879
  • 15. Chandio AA, Jiang Y, Rehman A, Rauf A (2020a) Short and long-run impacts of climate change on agriculture: an empirical evidence from China. Int J Clim Chang Strat Manag 12(2):201–221. https://doi.org/10.1108/IJCCSM-05-2019-0026
  • 16. Chandio AA, Ozturk I, Akram W, Ahmad F, Mirani AA (2020b) Empirical analysis of climate change factors affecting cereal yield: evidence empirical analysis of climate change factors affecting cereal yield: evidence from Turkey. Environ Sci Pollut Res 27(11):11944–11957. https://doi.org/10.1007/s11356-020-07739-y
  • 17. Cradock-henry NA, Blackett P, Hall M, Johnstone P, Teixeira E, Wreford A (2020) Climate adaptation pathways for agriculture: insights from a participatory process. Environ Sci Policy 107:66–79. https://doi.org/10.1016/j.envsci.2020.02.020
  • 18. do Prado Tanure TM, Miyajima DN, Magalhães AS, Domingues EP, Carvalho TS (2020) The impacts of climate change on agricultural production, land use and economy of the legal Amazon region between 2030 and 2049. Economia 21(1):73–90. https://doi.org/10.1016/j.econ.2020.04.001
  • 19. Duasa J (2007) Determinants of Malaysian trade balance: an ARDL bound testing approach. Glob Econ Rev 36(1):89–102. https://doi.org/10.1080/12265080701217405
  • 20. Elahi E, Khalid Z, Weijun C, Zhang H (2020) The public policy of agricultural land and its impact on crop productivity in Punjab province of Pakistan. Land Use Policy 90:104324. https://doi.org/10.1016/j.landusepol.2019.104324
  • 21. GOP (2020) Pakistan economic survey (2019–2020). In: Economic advisor’s wing Ministry of Finance, Islamabad. https://www.finance.gov.pk/survey_1718.html
  • 22. Gorst A, Dehlavi A, Groom B (2018) Crop productivity and adaptation to climate change in Pakistan. Environ Dev Econ 23(6):679–701. https://doi.org/10.1017/S1355770X18000232
  • 23. Gul A, Chandio AA, Siyal SA, Rehman A, Xiumin W (2022a) How is climate change impacting the major yield crops of Pakistan? An exploration from long - and short - run estimation. Environ Sci Pollut Res 29(18):26660–26674. https://doi.org/10.1007/s11356-021-17579-z
  • 24. Gul A, Xiumin W, Chandio AA, Rehman A, Siyal SA, Asare I (2022b) Tracking the effect of climatic and non-climatic elements on rice production in Pakistan using the ARDL approach. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-18541-3
  • 25. Haidar A, Mm S, Idress M, Laila S, Iqbal M (2016) Impact of climate change on seasonal crop productivity in Khyber. Arts Soc Sci J 7(6):1–4. https://doi.org/10.4172/2151-6200.1000232
  • 26. Haq S, Boz I, Shahbaz P (2021) Adoption of climate-smart agriculture practices and differentiated nutritional outcome among rural households: a case of Punjab province, Pakistan. Food Secur 13(4):913–931. https://doi.org/10.1007/s12571-021-01161-z
  • 27. Hughes S (2020) Principles, drivers, and policy tools for just climate change adaptation in legacy cities. Environ Sci Policy 111:35–41. https://doi.org/10.1016/j.envsci.2020.05.007
  • 28. Ibrahim MH, Law SH (2016) Institutional quality and CO2 emission-trade relations: evidence from Sub-Saharan Africa. South Afr J Econ 84(2):323–340. https://doi.org/10.1111/saje.12095
  • 29. Jan I, Durrani SF, Khan H (2020) Does renewable energy efficiently spur economic growth? Evidence from Pakistan. Environ Dev Sustain. https://doi.org/10.1007/s10668-019-00584-1
  • 30. Jan I, Ashfaq M, Chandio AA (2021) Impacts of climate change on yield of cereal crops in northern climatic region of Pakistan. Environ Sci Pollut Res 28(42):60235–60245. https://doi.org/10.1007/s11356-021-14954-8
  • 31. Janjua PZ, Samad G, Khan NU (2010) Impact of climate change on wheat production : a case study of Pakistan. Pak Dev Rev 49:799–820
  • 32. Janjua PZ, Samad G, Khan N (2014) Climate change and wheat production in Pakistan: an autoregressive distributed lag approach. NJAS Wagening J Life Sci 68:13–19. https://doi.org/10.1016/j.njas.2013.11.002
  • 33. Kabir A, Amin MN, Roy K, Hossain S (2021) Determinants of climate change adaptation strategies in the coastal zone of Bangladesh: implications for adaptation to climate change in developing countries. Mitig Adapt Strat Glob Chang. https://doi.org/10.1007/s11027-021-09968-z
  • 34. Khan A, Ali S, Shah SA, Khan A, Ullah R (2019a) Impact of climate change on maize productivity in Khyber Pakhtunkhwa, Pakistan. Sarhad J Agric 35(2):594–601. https://doi.org/10.17582/journal.sja/2019/35.2.594.601
  • 35. Khan MF, Nakano Y, Kurosaki T (2019b) Impact of contract farming on land productivity and income of maize and potato growers in Pakistan. Food Policy 85:28–39. https://doi.org/10.1016/j.foodpol.2019.04.004
  • 36. Khan N, Shahid S, Ismail T, Ahmed K, Nawaz N (2019c) Trends in heat wave related indices in Pakistan trends in heat wave related indices in Pakistan. Stoch Environ Res Risk Assess 33(1):287–302. https://doi.org/10.1007/s00477-018-1605-2
  • 37. Khan MI, Zhu X, Arshad M, Zaman M, Niaz Y, Ullah I, Anjum MN, Uzair M (2020) Assessment of spatiotemporal characteristics of agro- meteorological drought events based on comparing standardized soil moisture index, standardized precipitation index and multivariate standardized drought index. J Water Clim Chang 11(s1):1–17. https://doi.org/10.2166/wcc.2020.280
  • 38. Khan S, Nadeem B, Akraam F, Aslam N (2022) Effects of climate change on the major agricultural crop’s productivity in Balochistan province, Pakistan. Sci Int 34(2):79–83. https://doi.org/10.13140/RG.2.2.22324.94082
  • 39. Kwiatkowski D, Phillips PCB, Schmidt P (1992) Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root ? J Econom 54(1–3):159–178
  • 40. Leng G, Huang M (2017) Crop yield response to climate change varies with crop spatial distribution pattern. Sci Rep 7(1):1–10. https://doi.org/10.1038/s41598-017-01599-2
  • 41. Li X, Takahashi T, Suzuki N, Kaiser HM (2011) The impact of climate change on maize yields in the United States and China. Agric Syst 104(4):348–353. https://doi.org/10.1016/j.agsy.2010.12.006
  • 42. Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333(616):616–620. https://doi.org/10.1126/science.1204531
  • 43. Lybbert TJ, Sumner DA (2012) Agricultural technologies for climate change in developing countries: policy options for innovation and technology diffusion. Food Policy 37(1):114–123. https://doi.org/10.1016/j.foodpol.2011.11.001
  • 44. Mehmood U, Tariq S, Ul-Haq Z, Meo MS (2021) Does the modifying role of institutional quality remains homogeneous in GDP-CO2 emission nexus? New evidence from ARDL approach. Environ Sci Pollut Res 28(8):10167–10174. https://doi.org/10.1007/s11356-020-11293-y
  • 45. Mendelsohn R (2014) The impact of climate change on agriculture in asia. J Integr Agric 13(4):660–665. https://doi.org/10.1016/S2095-3119(13)60701-7
  • 46. Menegaki AN (2019) The ARDL method in the energy-growth nexus field; best implementation strategies. Economies 7(4):1–16. https://doi.org/10.3390/economies7040105
  • 47. Meo MS, Ashraf M, Shaikh M, Ali M, Sheikh SM (2018) Asymmetric impact of oil prices, exchange rate, and inflation on tourism demand in Pakistan: new evidence from nonlinear ARDL. Asia Pac J Tour Res 23(4):408–422. https://doi.org/10.1080/10941665.2018.1445652
  • 48. Miller DD, Ota Y, Sumaila UR, Cisneros-Montemayor AM, Cheung WWL (2018) Adaptation strategies to climate change in marine systems. Glob Chang Biol 24(1):e1–e14. https://doi.org/10.1111/ijlh.12426
  • 49. Moore F, Lobell DB (2014) Adaptation potential of European agriculture in response to climate change. Nat Clim Chang. https://doi.org/10.1038/nclimate2228
  • 50. Nawaz N, Li X, Chen Y, Guo Y, Wang X, Nawaz N (2019) Temporal and spatial characteristics of precipitation and temperature in Punjab, Pakistan. Water 11(9):1916. https://doi.org/10.3390/w11091916
  • 51. Ng S, Perron P (2001) Lag length selection and the construction of unit root tests with good size and power. Econometrica 69(6):1519–1554
  • 52. Ohana-Levi N, Munitz S, Ben-Gal A, Netzer Y (2020) Evaluation of within-season grapevine evapotranspiration patterns and drivers using generalized additive models. Agric Water Manag 228(6):105808. https://doi.org/10.1016/j.agwat.2019.105808
  • 53. Pakistan-Agricultural Research Project (2018). https://documents.worldbank.org/en/publication/documents-reports/documentdetail/248871468144891704/pakistan-agricultural-research-project
  • 54. Pesaran MH (1974) On the general problem of model selection. Rev Econ Stud 41(2):153–171. https://doi.org/10.2307/2296710
  • 55. Pesaran MH, Shin Y, Smith RJ (2001) Bounds testing approaches to the analysis of level relationships. J Appl Econom 16(3):289–326. https://doi.org/10.1002/JAE.616
  • 56. Phillips P, Perron P (1988) Testing for a unit root in time series regression. Biometrika 75:335–346
  • 57. Piperno DR, Flannery KV (2001) The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry. Proc Natl Acad Sci 98(4):2101–2103
  • 58. Rahman MM, Ahmad S, Mahmud AS, Ahmed A, Nahar Q (2019) Health consequences of climate change in Bangladesh: an overview of the evidence, knowledge gaps and challenges. Wiley Interdiscip Rev Clim Chang 10(5):601. https://doi.org/10.1002/wcc.601
  • 59. Rasul G (2003) Climate data and resources. Clim Data Model Anal. https://doi.org/10.4324/9780203412152
  • 60. Rehman A, Chandio AA, Jingdong L, Hussain I (2016a) Economic perspectives of maize crop economic perspectives of maize crop in Pakistan : A time series analysis (1970–2015) (part 3). Int J Adv Biotechnol Res (IJBR) 7(3):968–974
  • 61. Rehman A, Jingdong L, Khatoon R, Hussain I, Iqbal MS (2016b) Modern agricultural technology adoption its importance, role and usage for the improvement of agriculture. Life Sci J 14(2):70–74. https://doi.org/10.7537/marslsj140217.10
  • 62. Rehman A, Ozturk I, Zhang D (2019) The causal connection between CO2 emissions and agricultural productivity in Pakistan: empirical evidence from an autoregressive distributed lag bounds testing approach. Appl Sci (switzerland). https://doi.org/10.3390/app9081692
  • 63. Sah RP, Chakraborty M, Prasad K, Pandit M, Tudu VK, Chakravarty MK, Narayan SC, Rana M, Moharana D (2020) Impact of water deficit stress in maize: phenology and yield components. Sci Rep 10(1):1–15. https://doi.org/10.1038/s41598-020-59689-7
  • 64. Sarkar MdSK, Begum RA, Pereira JJ (2020) Impacts of climate change on oil palm production in Malaysia. Environ Sci Pollut Res 27(9):9760–9770. https://doi.org/10.1007/s11356-020-07601-1
  • 65. Shahbaz M, Hye QMA, Tiwari AK (2013) Economic growth, energy consumption, financial development, international trade and CO2 emissions, in Indonesia. Renew Sustain Energy Rev 25:109–121. https://doi.org/10.1016/j.rser.2013.04.009
  • 66. Shakoor U, Saboor A, Baig I, Afzal A (2015) Climate variability impacts on rice crop production in Pakistan. Pak J Agric Res 28(1):19
  • 67. Srivastava RK, Panda RK, Chakraborty A (2021) Assessment of climate change impact on maize yield and yield attributes under different climate change scenarios in eastern India. Ecol Ind 120:106881. https://doi.org/10.1016/j.ecolind.2020.106881
  • 68. Syed A, Raza T, Bhatti TT, Eash NS (2022) Climate impacts on the agricultural sector of Pakistan: risks and solutions. Environ Chall 6:100433. https://doi.org/10.1016/j.envc.2021.100433
  • 69. Thapa R, Devkota S, Subedi S, Jamshidi B (2022) Forecasting area, production and productivity of vegetable crops in Nepal using the Box–Jenkins ARIMA model. Turkish J Agric Food Sci Technol 10(2):174–181. https://doi.org/10.24925/turjaf.v10i2.174-181.4618
  • 70. Traore B, Corbeels M, van Wijk MT, Rufin MC, Giller KE (2013) Effects of climate variability and climate change on crop production in southern Mali. Eur J Agron 49:115–125. https://doi.org/10.1016/j.eja.2013.04.004
  • 71. Uzar U (2020) Is income inequality a driver for renewable energy consumption? J Pre-Proof 255:120. https://doi.org/10.1016/j.jclepro.2020.120287
  • 72. Van MH, Havlik P, Lotze-campen H, Stehfest E, Witzke P, Domınguez IP, Bodirsky BL, van Dijk M, Doelman J, Fellmann T, Humpenoder F, Koopman JFL, Muller C, Popp A, Tabeau A, Valin H, van Zeist W-J (2018) Comparing impacts of climate change and mitigation on global agriculture by 2050. Environ Res Lett 13(6):064021
  • 73. Wang J, Huang J, Yan T (2013) Impacts of climate change on water and agricultural production in ten large river basins in China. J Integr Agric 12(7):1267–1278. https://doi.org/10.1016/S2095-3119(13)60421-9
  • 74. Waseem M, Khurshid T, Abbas A, Ahmad I, Javed Z (2022) Impact of meteorological drought on agriculture production at different scales in Punjab. J Water Clim Chang 13(1):113–124. https://doi.org/10.2166/wcc.2021.244
  • 75. Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science. https://doi.org/10.1126/science.1239402
  • 76. Wilson AB, Avila-diaz A, Oliveira LF, Zuluaga CF, Mark B (2022) Climate extremes and their impacts on agriculture across the Eastern Corn Belt region of the U.S. Weather Clim Extreme 37(5):100467. https://doi.org/10.1016/j.wace.2022.100467
  • 77. Xiao D, Liu DL, Wang B, Feng P, Bai H, Tang J (2020) Climate change impact on yields and water use of wheat and maize in the North China plain under future climate change scenarios. Agric Water Manag 238(4):106238. https://doi.org/10.1016/j.agwat.2020.106238
  • 78. Xie H, Ringler C, Zhu T, Waqas A (2013) Droughts in Pakistan: a spatiotemporal variability analysis using the standardized precipitation index. Water Int 38(5):620–631. https://doi.org/10.1080/02508060.2013.827889
  • 79. Zahid M, Rasul G (2011) Frequency of extreme temperature and precipitation events in Pakistan 1965–2009. Sci Int 23(4):313–319
  • 80. Zaied YB, Cheikh NB (2015) Long-run versus short-run analysis of climate change impacts on agricultural crops. Environ Model Assess 20(3):259–271. https://doi.org/10.1007/s10666-014-9432-4
  • 81. Zaied YB, Zouabi O (2016) Climate change impacts on agriculture : a panel cointegration approach and application to Tunisia impacts of climate change on Tunisian olive oil output. Clim Chang 139(3):535–549. https://doi.org/10.1007/s10584-016-1801-3
  • 82. Zaman M, Ahmad I, Usman M, Saifullah M, Anjum MN, Khan MI, Qamar MU (2020) Event-based time distribution patterns, return levels, and their trends of extreme precipitation across Indus Basin. Water 12(12):3373. https://doi.org/10.3390/W12123373
  • 83. Zipper SC, Qiu J, Kucharik CJ (2016) Drought effects on US maize and soybean production : spatiotemporal patterns and historical changes drought effects on US maize and soybean production : spatiotemporal patterns and historical changes. Environ Res Lett 11(9):094021
  • 84. Zivot E, Andrews DWK (1992) Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. J Bus Econ Stat 20(1):25–44. https://doi.org/10.1198/073500102753410372
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e44208f7-33a0-4614-963d-77e0efc5beb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.