Czasopismo
2024
|
Vol. 30, Iss. 4
|
204--212
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Introduction: In recent times, numerous leading global societies have endeavored to advance proton therapy technology with the aim of making it universally accessible. The goal is to offer proton therapy to all cancer patients who stand to benefit from it, thereby enhancing their overall quality of life. This shared objective unites radiation oncologists, medical physicists, radiotherapists, and hospital directors worldwide. The introduction of proton therapy systems, coupled with adjustments to the momentum analysis system, holds potential clinical benefits. Material and Methods: The momentum analysis system typically modifies the energy of the clinical proton beam, influencing the shape and position of the Bragg peak. FLUKA, a Monte Carlo-based software, was employed to simulate various beam setups by directing the proton beam into a water phantom. The resulting Bragg peaks were analyzed and compared with those from different setup simulations. Results: The findings indicate that the Bragg peak undergoes changes in a proton therapy system, both with and without a modulator, across all potential tumor depths. The results demonstrate that the position of the Bragg peak can vary from Z = 31.4 cm for deep tumors such as prostate to Z = 2.6 cm for spinal axis tumors, solely by adjusting the modulator depth from ΔZmodulator = 5 to ΔZmodulator = 30 cm for an energy level of 250 MeV, without altering the proton beam energies. Conclusion: The investigation of these results plays a potential dosimetric consequence, especially for clinics interested in acquiring such a proton therapy system for treating and managing tumors at varying depths.
Słowa kluczowe
Rocznik
Tom
Strony
204--212
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
- Physics, Faculty of Sciences, Mohammed V University, Rabat, Morocco, a.zeghari@um5s.net.ma
autor
- Laboratory of Sciences and Health, High Institute of Health Sciences, Hassan First University, Settat, Morocco
autor
- Physics, Faculty of Sciences, Mohammed V University, Rabat, Morocco
autor
- Medical Physics Department, Hassan II Clinical, Fes, Morocco
- Physics, Faculty of Sciences, Mohammed V University, Rabat, Morocco
Bibliografia
- 1. Frenk J. Cancer is on the rise in developing countries. Harvard T.H. Chan School of Public Health. Available at: https://www.hsph.harvard.edu/news/magazine/shadow-epidemic/
- 2. Cancer. World Health Organization. Available at: https://www.who.int/news-room/fact-sheets/detail/cancer
- 3. Wiik BH. Rolf Wideröe and the Development of Particle Accelerators. Acta Oncologica. 1998;37(6):615-625. https://doi.org/10.1080/028418698430322
- 4. Lawrence EO, Edlefsen NE. On the production of high speed protons. Science. 1930;72:376
- 5. Wilson RR. Radiological Use of Fast Protons. Radiology. 1946;47(5):487-491. https://doi.org/10.1148/47.5.487
- 6. Slater JM, Archambeau JO, Miller DW, Notarus MI, Preston W, Slater JD. The proton treatment center at Loma Linda University Medical Center: Rationale for and description of its development. International Journal of Radiation Oncology*Biology*Physics. 1992;22(2):383-389. https://doi.org/10.1016/0360-3016(92)90058-p
- 7. Dowdell SJ. Pencil beam scanning proton therapy: the significance of secondary particles. Doctor of Philosophy thesis. University of Wollongong. Centre for Radiation Physics, University of Wollongong, 2011. https://ro.uow.edu.au/theses/3275
- 8. Konski A, Speier W, Hanlon A, Beck JR, Pollack A. Is Proton Beam Therapy Cost Effective in the Treatment of Adenocarcinoma of the Prostate? JCO. 2007;25(24):3603-3608. https://doi.org/10.1200/jco.2006.09.0811
- 9. Björk-Eriksson T, Glimelius B. The potential of proton beam therapy in paediatric cancer. Acta Oncologica. 2005;44(8):871-875. https://doi.org/10.1080/02841860500355959
- 10. Schippers JM, Lomax A, Garonna A, Parodi K. Can Technological Improvements Reduce the Cost of Proton Radiation Therapy? Seminars in Radiation Oncology. 2018;28(2):150-159. https://doi.org/10.1016/j.semradonc.2017.11.007
- 11. Schulte R, Johnstone C, Boucher S, et al. Transformative Technology for FLASH Radiation Therapy. Applied Sciences. 2023;13(8):5021. https://doi.org/10.3390/app13085021
- 12. Schippers JM, Lomax AJ. Emerging technologies in proton therapy. Acta Oncologica. 2011;50(6):838-850. https://doi.org/10.3109/0284186x.2011.582513
- 13. Bloch C, Hill PM, Chen KL, Saito A, Klein EE. Startup of the Kling Center for Proton Therapy. AIP Conference Proceedings. Published online 2013:314-318. https://doi.org/10.1063/1.4802340
- 14. Michaelidesová A, Vachelová J, Puchalska M, et al. Relative biological effectiveness in a proton spread-out Bragg peak formed by pencil beam scanning mode. Australas Phys Eng Sci Med. 2017;40(2):359-368. https://doi.org/10.1007/s13246-017-0540-8
- 15. Combs SE, Ellerbrock M, Haberer T, et al. Heidelberg Ion Therapy Center (HIT): Initial clinical experience in the first 80 patients. Acta Oncologica. 2010;49(7):1132-1140. https://doi.org/10.3109/0284186x.2010.498432
- 16. Kostromin SA, Syresin EM. Trends in accelerator technology for hadron therapy. Phys Part Nuclei Lett. 2013;10(7):833-853. https://doi.org/10.1134/s1547477114010154
- 17. Titt U, Zheng Y, Vassiliev ON, Newhauser WD. Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method. Phys Med Biol. 2007;53(2):487-504. https://doi.org/10.1088/0031-9155/53/2/014
- 18. Chen KL, Bloch CD, Hill PM, Klein EE. Evaluation of neutron dose equivalent from the Mevion S250 proton accelerator: measurements and calculations. Phys Med Biol. 2013;58(24):8709-8723. https://doi.org/10.1088/0031-9155/58/24/8709
- 19. Parodi K, Enghardt W. Potential application of PET in quality assurance of proton therapy. Phys Med Biol. 2000;45(11):N151-N156. https://doi.org/10.1088/0031-9155/45/11/403
- 20. Bragg WH, Kleeman R. XXXIX. On the α particles of radium, and their loss of range in passing through various atoms and molecules. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1905;10(57):318-340. https://doi.org/10.1080/14786440509463378
- 21. Cameron J, Schreuder N. Smaller – Lighter – Cheaper: New Technological Concepts in Proton Therapy. Biological and Medical Physics, Biomedical Engineering. Published online September 6, 2011:673-685. https://doi.org/10.1007/978-3-642-21414-1_40
- 22. ICRU Report 49, International Commission on Radiation Units and Measurements: Stopping Powers and Ranges for Protons and Alpha Particles (Bethesda, Maryland, USA). 1993.
- 23. Pavlovič M, Hammerle A. Ranges of protons in biological targets. Journal of Electrical Engineering. 2017;68(4):306-311. https://doi.org/10.1515/jee-2017-0043
- 24. Linz U, ed. Ion Beam Therapy. Springer Berlin Heidelberg; 2012. https://doi.org/10.1007/978-3-642-21414-1
- 25. Sølie JR, Pettersen HES, Meric I, Odland OH, Helstrup H, Röhrich D. A comparison of proton ranges in complex media using GATE/Geant4, MCNP6 and FLUKA. Published online 2017. https://doi.org/10.48550/ARXIV.1708.00668
- 26. Ekinci F, Bostanci E, Dagli Ö, Guzel MS. Analysis of Bragg curve parameters and lateral straggle for proton and carbon beams. CommunFacSciUnivAnkSeries A2-A3: PhysSci and Eng. 2021;63(1):32-41. https://doi.org/10.33769/aupse.864475
- 27. Hu M, Jiang L, Cui X, Zhang J, Yu J. Proton beam therapy for cancer in the era of precision medicine. J Hematol Oncol. 2018;11(1). https://doi.org/10.1186/s13045-018-0683-4
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e42849d2-4f3f-45b6-bd49-a6418652e609