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Abstract
The article describes a functionally graded porous material in an application for sandwich beams. The bending and vibration 
behaviors of this structure are studied using the finite element method based on a simple beam model. The influences of some 
parameters, e.g., the porosity factor or the exponent graded, are also studied in this article. Finally, the numerical results are 
presented with some discussion.
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1. Introduction

Nowadays, as a  general perception, porous composites 
play an important role in the development of society. Their 
distinguishing feature is their interesting and varied geom-
etries; for example, material distribution seems to have 
a lot of freedom in density control. The internal pores are 
closely related to changes in mechanical, electronic, ther-
mal, biological, and chemical properties, making this ma-
terial an attractive one for a range of applications. Some 
researchers consider porosity to be a manufacturing defect 
that can be graded and randomly dispersed whilst the po-
rous structures discussed in other papers cover those spe-
cifically shaped for possible performance enhancement, 
reflecting the nature of such functionally graded materials. 

There are two popular catalogues, as shown in Fig-
ure 1, to divide porous composites, i.e., by base material 
types and by geometrical features (Chen D. et al., 2023), 
where the former include ceramics, metals, concretes, 
polymers, and glasses, etc., (Ashby et al., 2000; Mei et al., 

2021; Wu et al., 2021) while the latter relate to the distin-
guishable cellular morphologies with 3D regularised cells, 
2D regularised cells, and stochastic open-/closed-cells 
(Chen E. et al., 2022; Shen et al., 2013; Veloso et al., 2022). 

As shown in Mei et al., 2021, 3D porous ceramics 
have become a major research topic in recent years due 
to advantages such as their light weight and high dura-
bility, unlike traditional ceramic materials. By applying 
3D printing techniques, hierarchical porous structures 
can be created by combining advanced manufactur-
ing processes with flexible designs. This is considered 
a  powerful and extremely attractive tool for making 
3D porous ceramics. Nonlinear forced vibration of 
2D  functionally graded porous material beams were 
studied in (Wu et al., 2021). With bidirectional function, 
the material components gradient changed in both y and 
z directions of the beam. The vibration response curves 
are obtained by extracting the amplitude of the period-
ic motions based on the periodic response of the dis-
crete system related to the pseudo-arc length technique. 
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a)

b)

Fig. 1. Porous materials: a) classification by base materials; b) classification by geometrical features  
(Ashby et al., 2000; Chen E. et al., 2022; 2023; Mei et al., 2021; Shen et al., 2013; Veloso et al., 2022; Wu et al., 2021)

In another paper by Chen E. et al. (2022), using 
a function of key morphological features and the asso-
ciated fracture properties of the parent solid to model 
the uniform and gradient densities, the authors estimat-
ed the strength of brittle open-cell foams. Moreover, 
to extract the Tessellation-based foam specimens with 
controlled microstructural characteristics correspond-
ing to crushing strength, these authors suggested the 
high-fidelity numerical models that were used to re-
produce the experimental data, and presented the com-
plex relationship between foam microstructure and 
macroscopic failure. The paper of Shen et  al. (2013) 
aimed to investigate the in-plane dynamic mechanical 
behavior of the functionally graded honeycomb. Finite 
element simulations were carried out using Abaqus/
Explicit, woth interesting innovations discernible in 
both catalogues. 

This article deals with the first type, especially for 
application in sandwich beams, which includes two dif-
ferent functionally graded face sheets and one homog-
enous ceramic core. This structure is widely applied in 
reality, such as in defense technology. For example, this 
structure with porosity can be used to reduce the weight 
of special military equipment, etc.

The bending and vibration behaviors of function-
ally graded porous sandwich beams using the simple 
finite element method are presented in this article as 
the main concern. The rest sections are established. 

The specific formulation for functionally graded po-
rous sandwich beams, including the two cases of po-
rosity, and for bending and vibration analyses are given 
in Sect. 2. The solutions to this study are presented in 
Sect. 3 and Sect. 4 supplies some necessary notes.

2. Formulations

A sandwich functionally graded porous (PFGS) beam 
of length L and thickness t is tested under uniform 
load  q. This beam has two functionally graded face 
sheets and one homogenous ceramic core, as shown in 
Figure 2. Based on the appearance of porosity related to 
the porosity factor e in this structure, the study investi-
gates two cases of porous distribution: 

	– case I with even porous face sheets, 
	– case II with a linear-uneven porous core. 

x

z

t

-t/2

t/2
2t
t1face sheet 1

face sheet 2
ceramic core

L

Fig. 2. Sandwich functionally graded porous beam

The values of material properties P(z) are formulat-
ed in the Equations (1–2).
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Fig. 3. The modification of E with e = 0.1, Al/Al2O3-Al2O3-SUS304/Al2O3 for Case I and II and the ratio of the thicknesses [1/1/1]

Fig. 4. The modification of E with n = 5, Al/Al2O3-Al2O3-SUS304/Al2O3 for Case I and II and the ratio of the thicknesses [1/1/1]
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Fig. 5. The modification of E with e = 0.1, Al/Al2O3-Al2O3-Al/Al2O3 for Case I and II and the ratio of the thicknesses [1/1/1]

Fig. 6. The modification of E with n = 5, Al/Al2O3-Al2O3-Al/Al2O3 for Case I and II and the ratio of the thicknesses [1/1/1]

A group of three numbers like “i1 / i2 / i3” is used to 
denote the ratio of the thicknesses of the bottom-core-
top layers. That means the thickness of the bottom 
layer is t.i1 / (i1 + i2 + i3), that of the core layer is t.i2 /  
(i1 + i2 + i3) and that of the top layer is t.i3 / (i1 + i2 + i3).  
The effective Young’s modulus is demonstrated in 
Figures 3 and 4 with the beam containing one homog-
enous ceramic core of Al2O3, one bottom face sheet 
of Al/Al2O3 and one top face sheet of SUS304/Al2O3. 

Figures 5 and 6 also depict the modification of 
Young’s modulus with a  beam containing one ho-
mogenous ceramic core of Al2O3 and two face sheets 
of Al/Al2O3. 

Based on the finite element procedure related to 
the simple beam model, the degrees of freedom asso-
ciated with a node of an element are a deflection w and 
a rotation φ. The stiffness matrix of an element Ke can 
be written by (Felippa, 2004):
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where k = 5/6 is called the shear correct factor; Ee is 
the Young’s modulus; Ie is the moment of inertia; Le is 

the  length of the element; Ge is the shear modulus, 
and Ae is cross-section area. 
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The element equation is given:

K d Fe e e= (4)

with

d Fe i i j j

T

e i i j j

T
w w f m f m� �� �� � �� ��� � , (5)

The mass matrix of an element can also be simpli-
fied by (Kien, 2007):
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with ρ is the mass density. After assembly, the deflec-
tions and frequencies can be obtained by solving the 
following equations:

Kd = F (7)
Md Kd = 0 + (8)

By using the three letters ‘C’, ‘S’ and ‘F’ to refer 
to the clamped, simply supported and free condition, 
four kinds of boundary conditions can be taken as (SS), 
(CS), (CC) and (CF) for PFGS beams.

3. Numerical solutions of research

A (SS) sandwich functionally graded porous (PFGS) 
beam is considered under a uniform load q. The ma-
terial properties of the beam are metal (Ti-6A1-4V) 
with E  =  70 GPa, ν = 0.3 and ceramic (ZrO2) with  
E = 380 GPa, ν = 0.3. The porosity factor e equals 0, 
for this example with case I. The deflection at posi-
tion L/2 is normalized by w E t w L q Lm=100 2

3 4
( / ) / / . 

These values are compared with other results from oth-
er beam theories in (Belarbi et al., 2022; Sayyad, 2019) 
as shown in Table 1 or Figure 7 for only the ratio of the 
thicknesses [1/1/1].

Fig. 7. The comparison of dimensionless deflections

Table 1. The comparison of the normalized deflections 
at position x = L/2 with e = 0 and case I

n Model
L/t = 5 L/t = 20

[1/1/1] [1/2/1] [1/1/1] [1/2/1]

0

Navier 3.1654 3.1654 2.8963 2.8963
HSDT 3.1241 3.1241 2.8585 2.8585

R-HSDT 3.1652 3.1652 2.8962 2.8962
Present 3.0219 3.0219 2.8872 2.8872

1

Navier 6.2693 5.4122 5.9401 5.1006
HSDT 6.3011 5.0341 5.9561 5.3415

R-HSDT 6.2688 5.4125 5.9400 5.1006
Present 6.1153 5.2602 5.9303 5.0910

2

Navier 8.3893 6.7579 8.0313 6.4276
HSDT 8.2734 6.3359 7.9201 6.6697

R-HSDT 8.3880 6.7581 8.0312 6.4276
Present 8.2326 6.6028 8.0213 6.4178

5

Navier 11.2274 8.5137 10.8376 8.1642
HSDT 11.0708 8.0576 10.6766 8.4045

R-HSDT 11.2242 8.5134 10.8374 8.1642
Present 11.0742 8.3584 10.8278 8.1543

10

Navier 12.5659 9.4050 12.1593 9.0471
HSDT 12.3910 8.9290 12.1030 9.2824

R-HSDT 12.5612 9.4041 12.1590 9.0470
Present 12.4160 9.2514 12.1496 9.0373

In the paper of Belarbi et al. (2022), the authors 
conducted finite element analysis for beam structures, 
as stated in this article via a newly refined higher shear 
deformation theory. At the same time, in the study of 
Sayyad (2019), the authors presented Navier-type 
closed-form solutions for static bending, elastic buck-
ling and free vibration analysis of symmetric function-
ally graded sandwich beams using a hyperbolic shear 
deformation theory. Based on the representation in Fig-
ure 7, it can be seen that the results obtained by the 
simple method, approximate their solutions quite well 
for both L/t ratios.

In order to clearly show the influence of material 
parameters as well as geometric characteristics on the 
deflection value, the modified code is done to achieve 
the results shown in Figures 8 and 9 and Tables 2 and 3. 
The increase of this deflection for the beam when in-
creasing n and e is clearly different between case I and 
case II for both (CC) and (SS) boundary conditions, 
respectively.

By changing different boundary conditions as 
well as investigating the case of other thickness ra-
tios, numerical results are obtained quite quickly with 
the largest deflection for the (CF) condition and ob-
viously the smallest for the (CC) condition as shown 
in Table 4.
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Fig. 8. The modification of dimensionless deflections with material: metal (Ti–6A1–4V) and ceramic (ZrO2) for Case I and II 
and the ratio of the thicknesses [1/2/1] under (SS) condition

Fig. 9. The modification of dimensionless deflections with material: metal (Ti–6A1–4V) and ceramic (ZrO2) for Case I and II 
and the ratio of the thicknesses [1/2/1] under (CC) condition

Table 2. The normalized deflections at position x = L/2 of (SS) beams

n e
Case I

n e
Case II

L/t = 5 L/t = 20 L/t = 5 L/t = 20
[1/1/1] [1/2/1] [1/1/1] [1/2/1] [1/1/1] [1/2/1] [1/1/1] [1/2/1]

0

0.1 3.2018 3.1835 3.0616 3.0447

0

0.1 3.0270 3.0346 2.8900 2.8964
0.2 3.4046 3.3636 3.2584 3.2204 0.2 3.0322 3.0475 2.8928 2.9057
0.3 3.6351 3.5656 3.4823 3.4177 0.3 3.0375 3.0608 2.8957 2.9151
0.4 3.8992 3.7936 3.7392 3.6408 0.4 3.0428 3.0743 2.8985 2.9246

1

0.1 6.9126 5.7785 6.7170 5.6027

1

0.1 6.1312 5.2943 5.9419 5.1196
0.2 7.9520 6.4116 7.7445 6.2288 0.2 6.1474 5.3290 5.9535 5.1484
0.3 9.3643 7.2031 9.1434 7.0127 0.3 6.1639 5.3645 5.9652 5.1777
0.4 11.3959 8.2212 11.1596 8.0224 0.4 6.1806 5.4008 5.9770 5.2072

2

0.1 9.7571 7.4460 9.5319 7.2531

2

0.1 8.2594 6.6547 8.0424 6.4631
0.2 11.9852 8.5401 11.7440 8.3387 0.2 8.2865 6.7077 8.0636 6.5090
0.3 15.5542 10.0177 15.2946 9.8069 0.3 8.3142 6.7620 8.0849 6.5557
0.4 22.2073 12.1243 21.9264 11.9033 0.4 8.3423 6.8175 8.1063 6.6030
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Table 3. The normalized deflections at position x = L/2 of (CC) beams

n e
Case I

n e
Case II

L/t = 5 L/t = 20 L/t = 5 L/t = 20
[1/1/1] [1/2/1] [1/1/1] [1/2/1] [1/1/1] [1/2/1] [1/1/1] [1/2/1]

0

0.1 0.7600 0.7551 0.6198 0.6163

0

0.1 0.7223 0.7248 0.5855 0.5866
0.2 0.8057 0.7949 0.6595 0.6517 0.2 0.7253 0.7305 0.5860 0.5887
0.3 0.8574 0.8392 0.7046 0.6914 0.3 0.7285 0.7364 0.5867 0.5908
0.4 0.9163 0.8891 0.7564 0.7363 0.4 0.7317 0.7426 0.5874 0.5929

1

0.1 1.5494 1.3056 1.3538 1.1299

1

0.1 1.3878 1.2079 1.1985 1.0332
0.2 1.7674 1.4383 1.5599 1.2555 0.2 1.3949 1.2199 1.2010 1.0393
0.3 2.0614 1.6031 1.8404 1.4127 0.3 1.4023 1.2323 1.2036 1.0455
0.4 2.4807 1.8138 2.2445 1.6151 0.4 1.4099 1.2453 1.2062 1.0517

2

0.1 2.1436 1.6537 1.9183 1.4609

2

0.1 1.8370 1.4944 1.6200 1.3028
0.2 2.6028 1.8798 2.3616 1.6785 0.2 1.8476 1.5110 1.6246 1.3124
0.3 3.3323 2.1833 3.0727 1.9726 0.3 1.8585 1.5284 1.6292 1.3221
0.4 4.6811 2.6134 4.4002 2.3924 0.4 1.8698 1.5465 1.6338 1.3320

Table 4. The normalized maximum deflections 
w E t w qLm� � � � �100

3 4

max
/

 
of PFGS beams  

under Cases I and II with n = 1 and e = 0.1

Case I
L/t = 5

SS CC CS CF
[1/1/1] 6.9126 1.5494 3.0283 65.1927
[1/2/1] 5.7785 1.3056 2.5410 54.4235
[2/2/1] 6.1861 1.3969 2.7195 58.2692
[1/1/2] 7.0437 1.5856 3.0920 66.3810

Case II
L/t = 5

SS CC CS CF
[1/1/1] 6.1312 1.3878 2.6983 57.7291
[1/2/1] 5.2943 1.2079 2.3387 49.7816
[2/2/1] 5.6325 1.2828 2.4861 52.9783
[1/1/2] 6.2747 1.4236 2.7645 59.0570

Case I
L/t = 20

SS CC CS CF
[1/1/1] 6.7170 1.3538 2.8035 64.4102
[1/2/1] 5.6027 1.1299 2.3390 53.7205
[2/2/1] 5.9990 1.2098 2.5044 57.5206
[1/1/2] 6.8363 1.3783 2.8537 65.5517

Case II
L/t = 20

SS CC CS CF
[1/1/1] 5.9419 1.1985 2.4808 56.9717
[1/2/1] 5.1196 1.0332 2.1380 49.0828
[2/2/1] 5.4493 1.0996 2.2756 52.2455
[1/1/2] 6.0771 1.2259 2.5374 58.2665

For free vibration analysis, the next verification of 
the proposed model is presented for PFGS beam. The 

material properties of the beam are assumed to be: me-
tal (Al) with Em = 70 GPa, νm = 0.3, ρm = 2,702 kg/m3  
and ceramic (Al2O3) with Ec = 380 GPa, νc = 0.3,  
ρc = 3,960 kg/m3. The normalized natural frequency  
� � �� � �L t Em m

2
/ / is calculated for each case of the 

beam. By taking e = 0, L/t = 20 for Case I and chan-
ging n, these values are given in Table 5 and compared 
to other results in the paper by Vo et al. (2014).

Table 5. The normalized frequencies of  
(SS/CC) PFGS beams under Case I, e = 0 and L/t = 20

BC n [1/1/1] [1/2/1] [2/2/1]

Vo et al.

SS

0
5.4603 5.4603 5.4603

Present 5.4692 5.4692 5.4692

Vo et al.
1

4.0328 4.2889 4.1602

Present 4.0362 4.2931 4.2017

Vo et al.
2

3.5389 3.8769 3.7049

Present 3.5412 3.8800 3.7807

Vo et al.

CC

0
12.2228 12.2228 12.2228

Present 12.3167 12.3167 12.3167

Vo et al.
1

9.0722 9.6411 9.3550

Present 9.1090 9.6860 9.4801

Vo et al.
2

7.9727 8.7262 8.3430

Present 7.9971 8.7592 8.5350

Finally, with two Cases I and II, L/t = 5 and 20, 
e  = 0.1 and n = 1, the normalized frequencies of 
PFGS beams are given in Table 6 for several ratio 
thicknesses as well as four kinds of boundary con-
ditions, respectively. Figure 10 also shows the first 
three mode shapes of PFGS beams with e = 0.1, 
n = 1 and L/t = 20.
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Table 6. The normalized frequencies of PFGS beams under Cases I and II, e = 0.1 and n = 1

Case I
L/t = 5

SS CC CS CF
[1/1/1] 3.8133 8.1516 5.7953 1.3789
[1/2/1] 4.0734 8.6733 6.1791 1.4738
[2/2/1] 3.9920 8.5025 6.0564 1.4444
[1/1/2] 3.8231 8.1552 5.8042 1.3831

Case II
L/t = 5

SS CC CS CF
[1/1/1] 3.9540 8.4121 5.9953 1.4314
[1/2/1] 4.2111 8.9242 6.3732 1.5254
[2/2/1] 4.1079 8.7131 6.2197 1.4878
[1/1/2] 3.9288 8.3489 5.9538 1.4225

Case I
L/t = 20

SS CC CS CF
[1/1/1] 3.9175 8.8436 6.1084 1.3970
[1/2/1] 4.1894 9.4544 6.5314 1.4940
[2/2/1] 4.1058 9.2660 6.4011 1.4642
[1/1/2] 3.9309 8.8722 6.1287 1.4018

Case II
L/t = 20

SS CC CS CF
[1/1/1] 4.0704 9.1851 6.3456 1.4516
[1/2/1] 4.3404 9.7914 6.7656 1.5479
[2/2/1] 4.2328 9.5494 6.5982 1.5096
[1/1/2] 4.0458 9.1288 6.3070 1.4428

Fig. 10. The first three mode shapes of PFGS beams with e = 0.1, n = 1 and L/t = 20

4. Conclusions

The article presents the application of functionally 
graded porous material to sandwich beams. The bend-
ing and vibration behaviors of this beam are studied us-
ing the finite element method, based on a simple beam 
model. The influences of some parameters like n, e, L/t, 
ratio of thicknesses, or boundary conditions on numer-

ical results are shown in this article. In case the engi-
neer needs an overview of the bending and vibration 
behaviors of sandwich beams, this simple beam model 
can be used to quickly obtain results, a  considerable 
advantage. However, in cases where engineers need 
more accurate results or deeper simulations of physical 
phenomena, they need to use more general theories or 
more accurate models which are lacking here.
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