Czasopismo
2019
|
Vol. 67, no. 6
|
1765--1776
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Computed X-ray tomography (CT), together with nuclear magnetic resonance spectroscopy, pulse- and pressure-decay permeability methods, is a source of comprehensive information about the geometrical parameters of the pore space. Geological material consists of 31 samples of tight, gas-bearing, clastic rocks from different wells and formations. The purpose was to parametrize in detail the pore structure, revealing the relationships between the various parameters and estimating the equation for assessing the fluid flow ability of analyzed tight rocks. Following parameters were taken into consideration in the pore space characterization: thickness mean, equivalent diameter, anisotropy, elongation, sphericity, Feret diameter, Feret coefficient, Feret shape; shape factors: 2nd circularity coefficient, Malinowska coefficient and Danielsson coefficient; as well as parameters from 3D skeleton analysis: junctions, branches, coordination number. It was captured the dependence of logarithmic T2 mean from NMR on junction count from CT, as well as T2 cutoff from NMR on elongation from CT for the all samples. Logarithm of absolute permeability was estimated based on multiple linear regression analysis using only geometrical parameters from X-ray nanotomography, which is a benefit in the times of coring material decrease.
Czasopismo
Rocznik
Tom
Strony
1765--1776
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, Krakow, Poland, krakow@agh.edu.pl
Bibliografia
- 1. Al-Raoush R, Papadopoulos A (2010) Representative elementary volume analysis of porous media using X-ray computed tomography. Powder Technol 200:69–77
- 2. Caubit C, Hamon G, Sheppard A, Øren P (2009) Evaluation of the reliability of prediction of petrophysical data through imagery and pore network modelling. Petrophys 50:322–334
- 3. Cnudde V, Boone M (2013) High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci Rev 123:1–17
- 4. Cnudde V, Boone M, Dewanckele J, Dierick M, Van Hoorebeke L, Jacobs P (2011) 3D characterization of sandstone by means of X-ray computed tomography. Geosphere 7:54–61
- 5. Feldkamp L, Davis L, Kress J (1984) Practical cone-beam algorithm. J Opt Soc Am 1:612–619
- 6. Ghanizadeh A, Clarkson ChR, Aquino S, Vahedian A (2017) Permeability standards for tight rocks: design, manufacture and validation. Fuel 197:121–137
- 7. Guo X, Shen Y, He S (2015) Quantitative pore characterization and the relationship between pore distributions and organic matter in shale based on Nano-CT image analysis: a case study for a lacustrine shale reservoir in the Triassic Chang 7 member, Ordos Basin, China. J Nat Gas Eng 27(3):1630–1640
- 8. Habrat M, Krakowska P, Puskarczyk E, Jędrychowski M, Madejski P (2017) The concept of a computer system for interpretation of tight rocks using X-ray computed tomography results. Studia Geotech et Mech 39(1):101–107
- 9. Handwerger D, Suarez-Rivera R, Vaughn K, Keller J (2011) Improved petrophysical core measurements on tight shale reservoirs using retort and crushed samples. In: SPE annual technical conference and exhibition, 30 October–2 November, Denver, Colorado, USA, SPE 147456, pp 1–19
- 10. Jarzyna J, Krakowska P, Puskarczyk E, Wawrzyniak-Guz K, Bielecki J, Tkocz K, Tarasiuk J, Wroński S, Dohnalik M (2016) X-ray computed microtomography—a useful tool for petrophysical properties determination. Comput Geosci 20(5):1155–1167
- 11. Jędrychowski M, Krakowska P, Puskarczyk E, Madejski P, Habrat M (2017) Segmentation method of pore space based on Fourier transform processing of micro-CT 3D data. In: 79th EAGE conference and exhibition 2017, 12–15 June, Paris, EarthDoc European Association of Geoscientists and Engineers database, https://doi.org/10.3997/2214-4609.201701266
- 12. Josh M, Esteban L, Delle Piane C, Sarout J, Dewhurst DN, Clennell MB (2012) Laboratory characterization of shale properties. J Pet Sci Eng 88–89:107–124
- 13. Kaczmarek Ł, Wejrzanowski T, Skibiński J, Maksimczuk M, Krzyżak A (2017) High-resolution computed microtomography for the characterization of a diffusion tensor imaging phantom. Acta Geophys 65(1):259–268
- 14. Karpyn ZT, Alajmi A, Radaelli F, Halleck PM, Grader AS (2009) X-ray CT and hydraulic evidence for a relationship between fracture conductivity and adjacent matrix porosity. Eng Geol 103(3–4):139–145
- 15. Kayser A, Knackstedt M, Ziauddin M (2006) A closer look at pore geometry. Oilfield Rev 18(1):4–13
- 16. Ketcham RA, Carlson WD (2001) Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput Geosci 27:381–400
- 17. Krakowska P (2017) Digital rock models of Precambrian and Paleozoic tight formations from Poland. Geol Q 61(4):896–907
- 18. Krakowska P, Puskarczyk E (2015) Tight reservoir properties derived by nuclear magnetic resonance, mercury porosimetry and computed microtomography laboratory techniques. Case study of Palaeozoic clastic rocks. Acta Geophys 63(3):789–814
- 19. Krakowska P, Dohnalik M, Jarzyna J, Wawrzyniak-Guz K (2016) Computed X-ray microtomography as the useful tool in petrophysics: a case study of tight carbonates Modryn formation from Poland. J Nat Gas Sci Eng 31:67–75
- 20. Krakowska P, Puskarczyk E, Jędrychowski M, Habrat M, Madejski P (2018) Innovative characterization of tight sandstones from Paleozoic basins in Poland using X-ray computed tomography supported by nuclear magnetic resonance and mercury porosimetry. J Pet Sci Eng 166:389–405
- 21. Liu T, Jin X, Wang M (2018) Critical resolution and sample size of digital rock analysis for unconventional reservoirs. Energies 11(1798):1–15
- 22. Madejski P, Krakowska P, Habrat M, Puskarczyk E, Jędrychowski M (2018) Comprehensive approach for porous materials analysis using a dedicated preprocessing tool for mass and heat transfer modeling. J Therm Sci 27(5):479–486
- 23. Mostaghimi P, Blunt MJ, Bijeljic B (2013) Computations of absolute permeability on micro-CT images. Math Geosci 45:103–125
- 24. Puskarczyk E, Krakowska P, Jędrychowski M, Habrat M, Madejski P (2018) A novel approach to the quantitative interpretation of rock parameters using nano-CT on the example of Paleozoic carbonates. Acta Geophys 66(6):1453–1461
- 25. Rabbani A, Ayatollahi S, Kharrat R, Dashti N (2016) Estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image. Adv Water Res 94:264–277
- 26. Ridgway K, Tarbuck K (1967) The random packing of spheres. Br Chem Eng 12:384–388
- 27. Stock SR (2008) Microcomputed tomography. Methodology and application. CRS Press, Boca Raton
- 28. Sun H, Yao J, Cao YC, Fan DY, Zhang L (2017) Characterization of gas transport behaviors in shale gas and tight gas reservoirs by digital rock analysis. Int J Heat Mass Transf 104:227–239
- 29. TIBCO Software (2017) Statistica help. On-line version
- 30. Verri I, Della Torre A, Montenegro G, Onorati A, Duca S, Mora CA, Radaelli F, Trombin G (2017) Development of a digital rock physics workflow for the analysis of sandstones and tight rocks. J Pet Sci Eng 156:790–800
- 31. Wellington SL, Vinegar H (1987) X-ray computerized tomography. J Pet Technol 39:885–898
- 32. Zhang L, Lu S, Xiao D, Li B (2017) Pore structure characteristics of tight sandstones in the northern Songliao Basin, China. Marine Pet Geol 88:170–180
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e3f24c6f-3f0d-4ec4-9e5b-396a1b8840be