Warianty tytułu
Języki publikacji
Abstrakty
In this paper we present some different types of ideal convergence/divergence and of ideal continuity for Riesz space-valued functions, and prove some basic properties and comparison results. We investigate the relations among different modes of ideal continuity and present a characterization of the (AP)-property for ideals of an abstract set Λ. Finally we pose some open problems.
Czasopismo
Rocznik
Tom
Strony
41--53
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
- Department of Mathematics and Computer Sciences, University of Perugia, via Vanvitelli 1, I-06123 Perugia, Italy, antonio.boccuto@unipg.it
autor
- Department of Mathematics, University of Athens, Panepistimiopolis, GR-15784 Athens, Greece, xenofonll@gmail.com
autor
- Department of Mathematics, University of Athens, Panepistimiopolis, GR-15784 Athens, Greece, npapanas@math.uoa.gr
autor
- Faculty of Mathematics and Computer Sciences, University of Łódź, Banacha 22, PL-90238 Łódź, Poland, wwil@uni.lodz.pl
Bibliografia
- [1] H. Albayrak and S. Pehlivan, On the ideal convergence of subsequences and rearrangements of a real sequence, Appl. Math. Lett. 23 (2010), 1203-1207.
- [2] E. Athanassiadou, X. Dimitriou, C. Papachristodoulos and N. Papanastassiou, Strong (a)-convergence and ideal strong exhaustiveness of sequences of functions, Int. J. Pure Appl. Math. 80 (2012), no. 2, 207-216.
- [3] V. Baláž, J. Červeňanskij, P. Kostyrko and T. Šalát, J-convergence and J-continuity of real functions, Acta Math. (Nitra) 5 (2002), 43-50.
- [4] M. Balcerzak, K. Dems and A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328 (2007), no. 1, 715-729.
- [5] A. Boccuto, Differential and integral calculus in Riesz spaces, Tatra Mt. Math. Publ. 14 (1998), 293-323.
- [6] A. Boccuto and D. Candeloro, Several types of equations in Riesz spaces and applications, Acta Math. (Nitra) 8 (2005), 7-21.
- [7] A. Boccuto and D. Candeloro, Sobczyk-Hammer decomposition and convergence theorems for measures with values in (l)-groups, Real Anal. Exchange 33 (2007/2008), no. 1, 91-106.
- [8] A. Boccuto and D. Candeloro, Integral and Differential Calculus in Riesz Spaces and applications, J. Appl. Funct. Anal. 3 (2008), 89-111.
- [9] A. Boccuto, X. Dimitriou and N. Papanastassiou, Basic matrix theorems for J-convergence in (l)-groups, Math. Slavaca 62 (2012), no. 5, 885-908.
- [10] A. Boccuto, X. Dimitriou and N. Papanastassiou, Ideal convergence and divergence of nets in (l)-groups, Czech. Math. J. 62 (2012), no. 137, 1073-1083.
- [11] A. Boccuto, X. Dimitriou and N. Papanastassiou, Modes of continuity involving almost and ideal convergence, Tatra Mt. Math. Publ. 52 (2012), 115-131.
- [12] A. Boccuto, X. Dimitriou, N. Papanastassiou and W. Wilczynski, Ideal exhaustiveness, continuity and α-convergence for lattice group-valued functions, Int. J. Pure Appl. Math. 70 (2011), no. 2, 211-227; Addendum to „Ideal exhaustiveness, continuity and α-convergence for lattice group-valued functions”, ibid. 75 (2012), no. 3, 383- 384.
- [13] J. Borsík and T. Šalát, On F-continuity of real functions, Tatra Mt. Math. Publ. 2 (1993), 37-42.
- [14] J. Connor and K. G. Grosse-Erdmann, Sequential definitions of continuity for real functions, Rocky Mountain J. Math. 33 (2003), no. 1, 93-121.
- [15] P. Das and S. K. Ghosal, Some further results on J-Cauchy sequences and condition (AP), Comput. Math. Appl. 59 (2010), 2597-2600.
- [16] P. Das, P. Kostyrko, W. Wilczynski and P. Malík, J- and J*- convergence of double sequences, Math. Slovaca 58 (2008), no. 5, 605-620.
- [17] K. Demirci, J- limit superior and limit inferior, Math. Commun. 6 (2001), no. 2, 165-172.
- [18] I. Farah, Analytic quotients: Theory of liftings for quotients over analytic ideals on the integers, Mem. Amer. Math. Sac. 148 (2000).
- [19] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 41-44.
- [20] A. R. Freedman and J. J. Sember, On summing sequences of 0’s and l’s, Rocky Mountain J. Math. 11 (1981), 419-425.
- [21] M. E. Gordji, S. Sarabadan and F. A. Arani, JK-convergence in 2-normed spaces, Funct. Anal. Approx. Comput. 4 (2012), no. 1, 1-7.
- [22] E. Kolk, Inclusion relations between the statistical convergence and strong summability, Acta Comment. Univ. Tartu. Math. 2 (1998), 39-54.
- [23] P. Kostyrko, M. Mačaj, T. Šalát and M. Sleziak, J-convergence and extremal J-limit points, Math. Slovaca 55 (2005), no. 4, 443-464.
- [24] P. Kostyrko, T. Šalát and W. Wilczynski, J-convergence, Real Anal. Exchange 26 (2000/2001), 669-685.
- [25] B. K. Lahiri and P. Das, J- and J* -convergence in topological spaces, Math. Bohemica 130 (2005), no. 2, 153-160.
- [26] B. K. Lahiri and P. Das, J- and J* -convergence of nets, Real Anal. Exchange 33 (2007/2008), no. 2, 431-442.
- [27] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
- [28] M. Mačaj and M. Sleziak, JK-convergence, Real Anal. Exchange 36 (2011), no. 1, 177-194.
- [29] F. Nuray and W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000), 513-527.
- [30] S. Pehlivan, Şençimen and Z. H. Yaman, On weak ideal convergence in normed spaces,J. Interdiscip. Math.13 (2010), 153-162.
- [31] G. M. Petersen, Regular Matrix Transformations, McGraw-Hill, London, 1966.
- [32] T. Šalát, B. C. Tripathy and M. Ziman, On some properties of J- convergence, Tatra Mt. Math. Publ. 28 (2004), no. 2, 274-286.
- [33] T. Šalát, B. C. Tripathy and M. Ziman, On J-convergence field, Ital. J. Pure Appl. Math. 17 (2005), 45-54.
- [34] M. Sleziak, J-continuity in topological spaces, Acta Math. (Nitra) 6 (2003), 115-122.
- [35] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e3f0fdf5-7adc-46f4-ae6d-d0757ded6629