Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 20, nr 1 | 41--53
Tytuł artykułu

Modes of ideal continuity and the additive property in the Riesz space setting

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we present some different types of ideal convergence/divergence and of ideal continuity for Riesz space-valued functions, and prove some basic properties and comparison results. We investigate the relations among different modes of ideal continuity and present a characterization of the (AP)-property for ideals of an abstract set Λ. Finally we pose some open problems.
Wydawca

Rocznik
Strony
41--53
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Department of Mathematics and Computer Sciences, University of Perugia, via Vanvitelli 1, I-06123 Perugia, Italy, antonio.boccuto@unipg.it
  • Department of Mathematics, University of Athens, Panepistimiopolis, GR-15784 Athens, Greece, xenofonll@gmail.com
  • Department of Mathematics, University of Athens, Panepistimiopolis, GR-15784 Athens, Greece, npapanas@math.uoa.gr
  • Faculty of Mathematics and Computer Sciences, University of Łódź, Banacha 22, PL-90238 Łódź, Poland, wwil@uni.lodz.pl
Bibliografia
  • [1] H. Albayrak and S. Pehlivan, On the ideal convergence of subsequences and rearrangements of a real sequence, Appl. Math. Lett. 23 (2010), 1203-1207.
  • [2] E. Athanassiadou, X. Dimitriou, C. Papachristodoulos and N. Papanastassiou, Strong (a)-convergence and ideal strong exhaustiveness of sequences of functions, Int. J. Pure Appl. Math. 80 (2012), no. 2, 207-216.
  • [3] V. Baláž, J. Červeňanskij, P. Kostyrko and T. Šalát, J-convergence and J-continuity of real functions, Acta Math. (Nitra) 5 (2002), 43-50.
  • [4] M. Balcerzak, K. Dems and A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328 (2007), no. 1, 715-729.
  • [5] A. Boccuto, Differential and integral calculus in Riesz spaces, Tatra Mt. Math. Publ. 14 (1998), 293-323.
  • [6] A. Boccuto and D. Candeloro, Several types of equations in Riesz spaces and applications, Acta Math. (Nitra) 8 (2005), 7-21.
  • [7] A. Boccuto and D. Candeloro, Sobczyk-Hammer decomposition and convergence theorems for measures with values in (l)-groups, Real Anal. Exchange 33 (2007/2008), no. 1, 91-106.
  • [8] A. Boccuto and D. Candeloro, Integral and Differential Calculus in Riesz Spaces and applications, J. Appl. Funct. Anal. 3 (2008), 89-111.
  • [9] A. Boccuto, X. Dimitriou and N. Papanastassiou, Basic matrix theorems for J-convergence in (l)-groups, Math. Slavaca 62 (2012), no. 5, 885-908.
  • [10] A. Boccuto, X. Dimitriou and N. Papanastassiou, Ideal convergence and divergence of nets in (l)-groups, Czech. Math. J. 62 (2012), no. 137, 1073-1083.
  • [11] A. Boccuto, X. Dimitriou and N. Papanastassiou, Modes of continuity involving almost and ideal convergence, Tatra Mt. Math. Publ. 52 (2012), 115-131.
  • [12] A. Boccuto, X. Dimitriou, N. Papanastassiou and W. Wilczynski, Ideal exhaustiveness, continuity and α-convergence for lattice group-valued functions, Int. J. Pure Appl. Math. 70 (2011), no. 2, 211-227; Addendum to „Ideal exhaustiveness, continuity and α-convergence for lattice group-valued functions”, ibid. 75 (2012), no. 3, 383- 384.
  • [13] J. Borsík and T. Šalát, On F-continuity of real functions, Tatra Mt. Math. Publ. 2 (1993), 37-42.
  • [14] J. Connor and K. G. Grosse-Erdmann, Sequential definitions of continuity for real functions, Rocky Mountain J. Math. 33 (2003), no. 1, 93-121.
  • [15] P. Das and S. K. Ghosal, Some further results on J-Cauchy sequences and condition (AP), Comput. Math. Appl. 59 (2010), 2597-2600.
  • [16] P. Das, P. Kostyrko, W. Wilczynski and P. Malík, J- and J*- convergence of double sequences, Math. Slovaca 58 (2008), no. 5, 605-620.
  • [17] K. Demirci, J- limit superior and limit inferior, Math. Commun. 6 (2001), no. 2, 165-172.
  • [18] I. Farah, Analytic quotients: Theory of liftings for quotients over analytic ideals on the integers, Mem. Amer. Math. Sac. 148 (2000).
  • [19] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 41-44.
  • [20] A. R. Freedman and J. J. Sember, On summing sequences of 0’s and l’s, Rocky Mountain J. Math. 11 (1981), 419-425.
  • [21] M. E. Gordji, S. Sarabadan and F. A. Arani, JK-convergence in 2-normed spaces, Funct. Anal. Approx. Comput. 4 (2012), no. 1, 1-7.
  • [22] E. Kolk, Inclusion relations between the statistical convergence and strong summability, Acta Comment. Univ. Tartu. Math. 2 (1998), 39-54.
  • [23] P. Kostyrko, M. Mačaj, T. Šalát and M. Sleziak, J-convergence and extremal J-limit points, Math. Slovaca 55 (2005), no. 4, 443-464.
  • [24] P. Kostyrko, T. Šalát and W. Wilczynski, J-convergence, Real Anal. Exchange 26 (2000/2001), 669-685.
  • [25] B. K. Lahiri and P. Das, J- and J* -convergence in topological spaces, Math. Bohemica 130 (2005), no. 2, 153-160.
  • [26] B. K. Lahiri and P. Das, J- and J* -convergence of nets, Real Anal. Exchange 33 (2007/2008), no. 2, 431-442.
  • [27] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
  • [28] M. Mačaj and M. Sleziak, JK-convergence, Real Anal. Exchange 36 (2011), no. 1, 177-194.
  • [29] F. Nuray and W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000), 513-527.
  • [30] S. Pehlivan, Şençimen and Z. H. Yaman, On weak ideal convergence in normed spaces,J. Interdiscip. Math.13 (2010), 153-162.
  • [31] G. M. Petersen, Regular Matrix Transformations, McGraw-Hill, London, 1966.
  • [32] T. Šalát, B. C. Tripathy and M. Ziman, On some properties of J- convergence, Tatra Mt. Math. Publ. 28 (2004), no. 2, 274-286.
  • [33] T. Šalát, B. C. Tripathy and M. Ziman, On J-convergence field, Ital. J. Pure Appl. Math. 17 (2005), 45-54.
  • [34] M. Sleziak, J-continuity in topological spaces, Acta Math. (Nitra) 6 (2003), 115-122.
  • [35] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e3f0fdf5-7adc-46f4-ae6d-d0757ded6629
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.