Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 28, nr 3 | 303--328
Tytuł artykułu

Tetracycline removal from water by adsorption on geomaterial, activated carbon and clay adsorbents

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of antibiotics for breeding and for humans increased considerably in recent years, as a dietary supplement to enhance animal growth. This frequent use leads to the detection of residues in water and wastewater. Thus, the emergence of new strains of bacteria resistant to these antibiotics and, can lead to incurable diseases of livestock, and can lead to a possible transmission of these strains to humans. The purpose of this work is to develop new materials based on treated Maghnia clay, activated carbon, cement, and PVA polymer, named geomaterials. These materials were intended for the containment of hazardous wastes in landfills. The removal of tetracycline from aqueous solution was tested by adsorption onto synthesised geomaterials and their mineral constituents. Adsorption kinetics revealed that tetracycline was rapidly retained by GM and ATMa. This was confirmed by the relatively short equilibrium time of 30 min. The pseudo-second-order and intraparticle models well fitted the adsorption kinetic of the TC-adsorbent studied systems. It was noticed that the adsorption kinetic passes through several mechanisms, was demonstrated by the multi-linearity on the plot of qt against the square root of t. The adsorption capacity (Qa) of TC onto GM is pH-dependent. Indeed, Qa reaches a maximum value (Qa = 12.58 mg · g–1 at a very acidic pH of 2, then the adsorbed amount decreases to reach a minimum value at pH of 8, and for basic pHsQa increases up to 10 mg · g–1.
Wydawca

Rocznik
Strony
303--328
Opis fizyczny
Bibliogr. 193 poz., il., tab., wykr., zdj.
Twórcy
  • Scientific and Technical Research Center in Physico-Chemical Analysis, PO box 384, Headquarters ex-Pasna Industrial area Bou-Ismail, zip code 42004 Tipaza, Algeria, phone +213(0)24325774, fax +213(0)24325774, souh_ait@yahoo.fr
  • LPCEMAE Laboratory, Faculty of Chemistry, Houari Boumediene University of Science and Technology (USTHB), PO box 32 ELALIA, Bab Ezzouar Algiers, Algeria, bhamdi_99@yahoo.fr
  • Controlled Porosity Materials Team, Institute of Materials Sciences of Mulhouse UMRCNRS 7361, University of Strasbourg, University of Haute Alsace, ENSCMu, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France, jocelyne.brendle@uha.fr
Bibliografia
  • [1] Dai J, Becquer T, Rouiller JH, Reversat G, Bernhard-Reversat F, Lavelle P. Influence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils. Appl Soil Ecol. 2004;25:99-109. DOI: 10.1016/j.apsoil.2003.09.003.
  • [2] Mirasgedis S, Hontou V, Georgopoulou E, Sarafidis Y, Gakis N, Lalas DP, et al. Environmental damage costs from airborne pollution of industrial activities in the greater Athens, Greece area and the resulting benefits from the introduction of BAT. Environ Impact Assess Rev. 2008;28:39-56. DOI: 10.1016/j.eiar.2007.03.006.
  • [3] Du YJ, Hayashi S. A study on sorption properties of Cd2+ on Ariake clay for evaluating its potential use as a landfill barrier material. Appl Clay Sci. 2006;32:14-24. DOI: 10.1016/j.clay.2006.01.003.
  • [4] Ololade OO, Mavimbela S, Oke SA, Makhadi R. Impact of leachate from northern landfill site in bloemfontein on water and soil quality: Implications for water and food security. Sustainability. 2019;11:4238. DOI: 10.3390/su11154238.
  • [5] Przydatek G, Kanownik W. Impact of small municipal solid waste landfill on groundwater quality. Environ Monit Assess. 2019;191:169. DOI: 10.1007/s10661-019-7279-5.
  • [6] Sun X-c, Xu Y, Liu Y-q, Nai C-x, Dong L, Liu J-c, et al. Evolution of geomembrane degradation and defects in a landfill: Impacts on long-term leachate leakage and groundwater quality. J Clean Prod. 2019;224:335-45. DOI: 10.1016/j.jclepro.2019.03.200.
  • [7] Mepaiyeda S, Madi K, Gwavava O, Baiyegunhi C. Geological and geophysical assessment of groundwater contamination at the Roundhill landfill site, Berlin, Eastern Cape, South Africa. Heliyon. 2020;6:e04249. DOI: 10.1016/j.heliyon.2020.e04249.
  • [8] Wu D, Sui Q, Yu X, Zhao W, Li Q, Fatta-Kassinos D, et al. Identification of indicator PPCPs in landfill leachates and livestock wastewaters using multiresidue analysis of 70 PPCPs: Analytical method development and application in Yangtze River Delta, China. Sci Total Environ. 2021;753:141653. DOI: 10.1016/j.scitotenv.2020.141653.
  • [9] Christensen TH, Kjeldsen P, Albrechtsen HJr, Heron G, Nielsen PH, Bjerg PL, et al. Attenuation of landfill leachate pollutants in aquifers. Crit Rev Environ Sci Technol. 1994;24:119-202. DOI: 10.1080/10643389409388463.
  • [10] Top S, Akkaya GK, Demir A, Yıldız Ş, Balahorli V, Bilgili MS. Investigation of leachate characteristics in field-scale landfill test cells. Int J Environ Res. 2019;13:829-42. DOI: 10.1007/s41742-019-00217-5.
  • [11] Nevondo V, Malehase T, Daso AP, Okonkwo OJ. Leachate seepage from landfill: a source of groundwater mercury contamination in South Africa. Water SA. 2019;45. DOI: 10.4314/wsa.v45i2.09.
  • [12] Gamoń F, Tomaszewski M, Ziembińska-Buczyńska A. Ecotoxicological study of landfill leachate treated in the ANAMMOX process. Water Qual Res J. 2019;54:230-41. DOI: 10.2166/wqrj.2019.042.
  • [13] Caroline Baettker E, Kozak C, Knapik HG, Aisse MM. Applicability of conventional and non-conventional parameters for municipal landfill leachate characterization. Chemosphere. 2020;251:126414. DOI: 10.1016/j.chemosphere.2020.126414.
  • [14] Nika MC, Ntaiou K, Elytis K, Thomaidi VS, Gatidou G, Kalantzi OI, et al. Wide-scope target analysis of emerging contaminants in landfill leachates and risk assessment using Risk Quotient methodology. J Hazard Mater. 2020;394:122493. DOI: 10.1016/j.jhazmat.2020.122493.
  • [15] Wang P, Wu D, You X, Su Y, Xie B. Antibiotic and metal resistance genes are closely linked with nitrogen-processing functions in municipal solid waste landfills. J Hazard Mater. 2021;403:123689. DOI: 10.1016/j.jhazmat.2020.123689.
  • [16] Kamiński W, Kuśmierek K, Świątkowski A, Tomczak E. Simultaneous adsorption of phenol derivatives from water onto spherical activated carbon. Ecol Chem Eng S. 2020;27:403-13. DOI: 10.2478/eces-2020-0026.
  • [17] King AG. Research advances: Eating clay; look to soil for new leads in arthritis treatment; The fate of tetracyclines. J Chem Educ. 2006;83:186-91. DOI: 10.1021/ed083p186.
  • [18] Wang YJ, Jia DA, Sun RJ, Zhu HW, Zhou DM. Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. Environ Sci Technol. 2008;42:3254-9. DOI: 10.1021/es702641a.
  • [19] David JC, Buchet A, Sialelli JN, Delouvée S. The use of antibiotics in veterinary medicine: Representations of antibiotics and biosecurity by pig farmers. Prat Psychol. 2020. DOI: 10.1016/j.prps.2020.06.003.
  • [20] Zhu Y, Liu K, Zhang J, Liu X, Yang L, Wei R, et al. Antibiotic body burden of elderly Chinese population and health risk assessment: A human biomonitoring-based study. Environ Pollut. 2020;256:113311. DOI: 10.1016/j.envpol.2019.113311.
  • [21] Yang Y, Bian L, Hang X, Yan C, Huang Y, Ye F, et al. In vitro activity of new tetracycline analogues omadacycline and eravacycline against clinical isolates of Helicobacter pylori collected in China. Diagn Microbiol Infect Dis. 2020;98:115129. DOI: 10.1016/j.diagmicrobio.2020.115129.
  • [22] Chan R, Wandee S, Wang M, Chiemchaisri W, Chiemchaisri C, Yoshimura C. Fate, transport and ecological risk of antibiotics from pig farms along the Bang Pakong River, Thailand. Agr Ecosyst Environ. 2020;304:107123. DOI: 10.1016/j.agee.2020.107123.
  • [23] Ji L, Chen W, Duan L, Zhu D. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents. Environ Sci Technol. 2009;43:2322-7. DOI: 10.1021/es803268b.
  • [24] Ji L, Chen W, Bi J, Zheng S, Xu Z, Zhu D, et al. Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ Toxicol Chem. 2010;29:2713-9. DOI: 10.1002/etc.350.
  • [25] Li R, Yuan Q, Zhang Y, Ling J, Han T. Hydrophilic interaction chromatographic determination of oxytetracycline in the environmental water using silica column. J Liq Chromatogr R t. 2011;34:511-20. DOI: 10.1080/10826076.2011.556971.
  • [26] Sun H, Shi X, Mao J, Zhu D. Tetracycline sorption to coal and soil humic acids: An examination of humic structural heterogeneity. Environ Toxicol Chem. 2010;29:1934-42. DOI: 10.1002/etc.248.
  • [27] Mishra S, Tiwary D, Ohri A, Agnihotri AK. Impact of municipal solid waste landfill leachate on groundwater quality in Varanasi, India. Ground Sustain Dev. 2019;9:100230. DOI: 10.1016/j.gsd.2019.100230.
  • [28] Mittal A, Singh R, Chakma S, Goel G. Permeable reactive barrier technology for the remediation of groundwater contaminated with nitrate and phosphate resulted from pit-toilet leachate. J Water Process Eng. 2020;37:101471. DOI: 10.1016/j.jwpe.2020.101471.
  • [29] Rasheed T, Bilal M, Hassan AA, Nabeel F, Bharagava RN, Romanholo Ferreira LF, et al. Environmental threatening concern and efficient removal of pharmaceutically active compounds using metal-organic frameworks as adsorbents. Environ Res. 2020;185:109436. DOI: 10.1016/j.envres.2020.109436.
  • [30] Yadav B, Pandey AK, Kumar LR, Kaur R, Yellapu SK, Sellamuthu B, et al. Introduction to wastewater microbiology: special emphasis on hospital wastewater. In: Tyagi RD, Sellamuthu B, Tiwari B, Yan S, Drogui P, Zhang X, et al., editors. Current Developments in Biotechnology and Bioengineering: Elsevier; 2020;141. DOI: 10.1016/B978-0-12-819722-6.00001-8.
  • [31] Luczkiewicz A, Fudala-Ksiazek S, Jankowska K, Quant B, Olanczuk-Neyman, K. Diversity of fecal coliforms and their antimicrobial resistance patterns in wastewater treatment model plant. Water Sci Technol. 2010;61:1383-92. DOI: 10.2166/wst.2010.015.
  • [32] Hölzel CS, Harms KS, Küchenhoff H, Kunz A, Müller C, Meyer K, et al. Phenotypic and genotypic bacterial antimicrobial resistance in liquid pig manure is variously associated with contents of tetracyclines and sulfonamides. J Appl Microbiol. 2010;108:1642-56. DOI: 10.1111/j.1365-2672.2009.04570.x.
  • [33] Kumar KC. Gupta S, Chander Y, Singh AK. Antibiotic use in agriculture and its impact on the terrestrial environment. ADV AGRON: Academic Press; 2005;1-54. DOI: 10.1016/S0065-2113(05)87001-4.
  • [34] Hassoun-Kheir N, Stabholz Y, Kreft J-U, de la Cruz R, Romalde JL, Nesme J, et al. Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: A systematic review. Sci Total Environ. 2020;743:140804. DOI: 10.1016/j.scitotenv.2020.140804.
  • [35] Voigt AM, Zacharias N, Timm C, Wasser F, Sib E, Skutlarek D, et al. Association between antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in anthropogenic wastewater - An evaluation of clinical influences. Chemosphere. 2020;241:125032. DOI: 10.1016/j.chemosphere.2019.125032.
  • [36] Sun H, Bjerketorp J, Levenfors JJ, Schnürer A. Isolation of antibiotic-resistant bacteria in biogas digestate and their susceptibility to antibiotics. Environ Pollut. 2020;266:115265. DOI: 10.1016/j.envpol.2020.115265.
  • [37] López-de-la-Cruz J, Pérez-Aranda M, Alcudia A, Begines B, Caraballo T, Pajuelo E, et al. Dynamics and numerical simulations to predict empirical antibiotic treatment of multi-resistant Pseudomonas aeruginosa infection. Commun Nonlinear Sci Numer Simul. 2020;91:105418. DOI: 10.1016/j.cnsns.2020.105418.
  • [38] Kümmerer K. Antibiotics in the aquatic environment - A review - Part I. Chemosphere. 2009;75:417-34. DOI: 10.1016/j.chemosphere.2008.11.086.
  • [39] Kümmerer K. Antibiotics in the aquatic environment - A review - Part II. Chemosphere. 2009;75:435-41. DOI: 10.1016/j.chemosphere.2008.12.006.
  • [40] Yue Y, Shen C, Ge Y. Biochar accelerates the removal of tetracyclines and their intermediates by altering soil properties. J Hazard Mater. 2019;380:120821. DOI: 10.1016/j.jhazmat.2019.120821.
  • [41] Santás-Miguel V, Arias-Estévez M, Díaz-Raviña M, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A, et al. Interactions between soil properties and tetracycline toxicity affecting to bacterial community growth in agricultural soil. Appl Soil Ecol. 2020;147:103437. DOI: 10.1016/j.apsoil.2019.103437.
  • [42] Xu L, Zhang H, Xiong P, Zhu Q, Liao C, Jiang G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci Total Environ. 2021;753:141975. DOI: 10.1016/j.scitotenv.2020.141975.
  • [43] Kulshrestha P, Giese RF, Aga DS. Investigating the molecular interactions of oxytetracycline in clay and organic matter: Insights on factors affecting its mobility in soil. Environ Sci Technol. 2004;38:4097-105. DOI: 10.1021/es034856q.
  • [44] Conde-Cid M, Fernández-Calviño D, Núñez-Delgado A, Fernández-Sanjurjo MJ, Arias-Estévez M, Álvarez-Rodríguez E. Estimation of adsorption/desorption Freundlich's affinity coefficients for oxytetracycline and chlortetracycline from soil properties: Experimental data and pedotransfer functions. Ecotoxicol Environ Saf. 2020;196:110584. DOI: 10.1016/j.ecoenv.2020.110584.
  • [45] Liu J, Yu F, Call DR, Mills DA, Zhang A, Zhao Z. On-farm soil resistome is modified after treating dairy calves with the antibiotic florfenicol. Sci Total Environ. 2020:141694. DOI: 10.1016/j.scitotenv.2020.141694.
  • [46] Xu H, Chen Z, Wu X, Zhao L, Wang N, Mao D, et al. Antibiotic contamination amplifies the impact of foreign antibiotic-resistant bacteria on soil bacterial community. Sci Total Environ. 2020:143693. DOI: 10.1016/j.scitotenv.2020.143693.
  • [47] Xu XR, Li XY. Sorption and desorption of antibiotic tetracycline on marine sediments. Chemosphere. 2010;78:430-6. DOI: 10.1016/j.chemosphere.2009.10.045.
  • [48] Peng Q, Song J, Li X, Yuan H, Liu M, Duan L, et al. Pharmaceutically active compounds (PhACs) in surface sediments of the Jiaozhou Bay, north China. Environ Pollut. 2020;266:115245. DOI: 10.1016/j.envpol.2020.115245.
  • [49] Lu L, Liu J, Li Z, Zou X, Guo J, Liu Z, et al. Antibiotic resistance gene abundances associated with heavy metals and antibiotics in the sediments of Changshou Lake in the three Gorges Reservoir area, China. Ecol Indic. 2020;113:106275. DOI: 10.1016/j.ecolind.2020.106275.
  • [50] Zhang Y, Chen H, Jing L, Teng Y. Ecotoxicological risk assessment and source apportionment of antibiotics in the waters and sediments of a peri-urban river. Sci Total Environ. 2020;731:139128. DOI: 10.1016/j.scitotenv.2020.139128.
  • [51] Lindsey ME, Meyer M, Thurman EM. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal Chem. 2001;73:4640-6. DOI: 10.1021/ac010514w.
  • [52] Nguyen CH, Fu C-C, Kao D-Y, Tran TTV, Juang R-S. Adsorption removal of tetracycline from water using poly(vinylidene fluoride)/polyaniline-montmorillonte mixed matrix membranes. J Taiwan Inst Chem Eng. 2020. DOI: 10.1016/j.jtice.2020.06.007.
  • [53] Li Z, Wang X, Xu N, Xiao Y, Ma L, Duan J. Cost-effective and visible-light-driven melamine-derived sponge for tetracyclines degradation and Salmonella inactivation in water. Chem Eng J. 2020;394:124913. DOI: 10.1016/j.cej.2020.124913.
  • [54] Avisar D, Levin G, Gozlan I. The processes affecting oxytetracycline contamination of groundwater in a phreatic aquifer underlying industrial fish ponds in Israel. Environ Earth Sci. 2009;59:939-45. DOI: 10.1007/s12665-009-0088-3.
  • [55] Sapkota AR, Curriero FC, Gibson KE, Schwab KJ. Antibiotic-resistant enterococci and fecal indicators in surface water and groundwater impacted by a concentrated swine feeding operation. Environ Health Persp. 2007;115:1040-5. DOI: 10.1289/ehp.9770.
  • [56] Huang F, An Z, Moran MJ, Liu F. Recognition of typical antibiotic residues in environmental media related to groundwater in China (2009-2019). J Hazard Mater. 2020;399:122813. DOI: 10.1016/j.jhazmat.2020.122813.
  • [57] Szymczycha B, Borecka M, Białk-Bielińska A, Siedlewicz G, Pazdro K. Submarine groundwater discharge as a source of pharmaceutical and caffeine residues in coastal ecosystem: Bay of Puck, southern Baltic Sea case study. Sci Total Environ. 2020;713:136522. DOI: 10.1016/j.scitotenv.2020.136522.
  • [58] Miao XS, Bishay F, Chen M, Metcalfe CD. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environ Sci Technol. 2004;38:3533-41. DOI: 10.1021/es030653q.
  • [59] Batt AL, Kim S, Aga DS. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere. 2007;68:428-35. DOI: 10.1016/j.Chemosphere.2007.01.008.
  • [60] Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Zhang X, et al. Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater. Sci Total Environ. 2020;720:137662. DOI: 10.1016/j.scitotenv.2020.137662.
  • [61] Ma S, Jing J, Liu P, Li Z, Jin W, Xie B, et al. High selectivity and effectiveness for removal of tetracycline and its related drug resistance in food wastewater through schwertmannite/graphene oxide catalyzed photo-Fenton-like oxidation. J Hazard Mater. 2020;392:122437. DOI: 10.1016/j.jhazmat.2020.122437.
  • [62] Xie W, Shi Y, Wang Y, Zheng Y, Liu H, Hu Q, et al. Electrospun iron/cobalt alloy nanoparticles on carbon nanofibers towards exhaustive electrocatalytic degradation of tetracycline in wastewater. Chem Eng J. 2021;405:126585. DOI: 10.1016/j.cej.2020.126585.
  • [63] Todorov B, Nedyalkova M, Simeonov V. Environmental effect of potential radiopharmaceuticals residuals. Ecol Chem Eng S. 2020;27:603-14. DOI: 10.2478/eces-2020-0038.
  • [64] Phoon BL, Ong CC, Mohamed Saheed MS, Show P-L, Chang J-S, Ling TC, et al. Conventional and emerging technologies for removal of antibiotics from wastewater. J Hazard Mater. 2020;400:122961. DOI: 10.1016/j.jhazmat.2020.122961.
  • [65] Pariente MI, Segura Y, Molina R, Martínez F. Chapter 2 - Wastewater treatment as a process and a resource. In: Olivares JA, Puyol D, Melero JA, Dufour J, editors. Wastewater Treatment Residues as Resources for Biorefinery Products and Biofuels. Elsevier; 2020;19-45. DOI: 10.1016/B978-0-12-816204-0.00002-3.
  • [66] Zaied BK, Rashid M, Nasrullah M, Zularisam AW, Pant D, Singh L. A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Sci Total Environ. 2020;726:138095. DOI: 10.1016/j.scitotenv.2020.138095.
  • [67] Gautam S, Agrawal H, Thakur M, Akbari A, Sharda H, Kaur R, et al. Metal oxides and metal organic frameworks for the photocatalytic degradation: A review. J Environ Chem Eng. 2020;8:103726. DOI: 10.1016/j.jece.2020.103726.
  • [68] Li Z, Chang PH, Jean JS, Jiang WT, Wang CJ. Interaction between tetracycline and smectite in aqueous solution. J Colloid Interface Sci. 2010;341:311-9. DOI: 10.1016/j.jcis.2009.09.054.
  • [69] Rajapaksha AU, Dilrukshi Premarathna KS, Gunarathne V, Ahmed A, Vithanage M. 9 - Sorptive removal of pharmaceutical and personal care products from water and wastewater. In: Prasad MNV, Vithanage M, Kapley A, editors. Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology. Butterworth-Heinemann; 2019;213-38. DOI: 10.1016/B978-0-12-816189-0.00009-3.
  • [70] da Rocha MC, Braz EMdA, Honório LMC, Trigueiro P, Fonseca MG, Silva-Filho EC, et al. Understanding the effect of UV light in systems containing clay minerals and tetracycline. Appl Clay Sci. 2019;183:105311. DOI: 10.1016/j.clay.2019.105311.
  • [71] ul Haque S, Nasar A, Inamuddin. 27 - Montmorillonite clay nanocomposites for drug delivery. In: Inamuddin, Asiri AM, Mohammad A, editors. Applications of Nanocomposite Materials in Drug Delivery: Woodhead Publishing; 2018. p. 633-48. DOI: 10.1016/B978-0-12-813741-3.00028-5.
  • [72] Scholtzová E. 6 - Computational modeling of nanoclays. In: Cavallaro G, Fakhrullin R, Pasbakhsh P, editors. Clay Nanoparticles. Elsevier; 2020. p. 139-66. DOI: 10.1016/B978-0-12-816783-0.00006-2.
  • [73] Wu M, Zhao S, Jing R, Shao Y, Liu X, Lv F, et al. Competitive adsorption of antibiotic tetracycline and ciprofloxacin on montmorillonite. Appl Clay Sci. 2019;180:105175. DOI: 10.1016/j.clay.2019.105175.
  • [74] Wen X, Zeng Z, Du C, Huang D, Zeng G, Xiao R, et al. Immobilized laccase on bentonite-derived mesoporous materials for removal of tetracycline. Chemosphere. 2019;222:865-71. DOI: 10.1016/j.chemosphere.2019.02.020.
  • [75] Chang P-H, Li Z, Jiang W-T, Jean J-S. Adsorption and intercalation of tetracycline by swelling clay minerals. Appl Clay Sci. 2009;46:27-36. DOI: 10.1016/j.clay.2009.07.002.
  • [76] Guo S, Yang W, You L, Li J, Chen J, Zhou K. Simultaneous reduction of Cr(VI) and degradation of tetracycline hydrochloride by a novel iron-modified rectorite composite through heterogeneous photo-Fenton processes. Chem Eng J. 2020;393:124758. DOI: 10.1016/j.cej.2020.124758.
  • [77] Li Z, Guo M, Sun X, Li L, Guo X, Huang L, et al. High concentration phosphate removal by calcite and its subsequent utilization for tetracycline removal. J Water Process Eng. 2020;37:101412. DOI: 10.1016/j.jwpe.2020.101412.
  • [78] Han H, Rafiq MK, Zhou T, Xu R, Mašek O, Li X. A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. J Hazard Mater. 2019;369:780-96. DOI: 10.1016/j.jhazmat.2019.02.003.
  • [79] Chang P-H, Li Z, Yu T-L, Munkhbayer S, Kuo T-H, Hung Y-C, et al. Sorptive removal of tetracycline from water by palygorskite. J Hazard Mater. 2009;165:148-55. DOI: 10.1016/j.jhazmat.2008.09.113.
  • [80] Wang W, Wang A. 2 - Palygorskite Nanomaterials: Structure, Properties, and Functional Applications. In: Wang A, Wang W, editors. Nanomaterials from Clay Minerals. Elsevier; 2019;21-133. DOI: 10.1016/B978-0-12-814533-3.00002-8.
  • [81] Shi Y, Yan Z, Xu Y, Tian T, Zhang J, Pang J, et al. Visible-light-driven AgBr-TiO2-Palygorskite photocatalyst with excellent photocatalytic activity for tetracycline hydrochloride. J Clean Prod. 2020;277:124021. DOI: 10.1016/j.jclepro.2020.124021.
  • [82] Lian J, Ouyang Q, Tsang PE, Fang Z. Fenton-like catalytic degradation of tetracycline by magnetic palygorskite nanoparticles prepared from steel pickling waste liquor. Appl Clay Sci. 2019;182:105273. DOI: 10.1016/j.clay.2019.105273.
  • [83] Caroni ALPF, de Lima CRM, Pereira MR, Fonseca JLC. The kinetics of adsorption of tetracycline on chitosan particles. J Colloid Interface Sci. 2009;340:182-91. DOI: 10.1016/j.jcis.2009.08.016.
  • [84] Ranjbari S, Tanhaei B, Ayati A, Khadempir S, Sillanpää M. Efficient tetracycline adsorptive removal using tricaprylmethylammonium chloride conjugated chitosan hydrogel beads: Mechanism, kinetic, isotherms and thermodynamic study. Int J Biol Macromol. 2020;155:421-9. DOI: 10.1016/j.ijbiomac.2020.03.188.
  • [85] Topal M, Arslan Topal EI. Optimization of tetracycline removal with chitosan obtained from mussel shells using RSM. J Ind Eng Chem. 2020;84:315-21. DOI: 10.1016/j.jiec.2020.01.013.
  • [86] Ahamad T, Naushad M, Al-Shahrani T, Al-hokbany N, Alshehri SM. Preparation of chitosan based magnetic nanocomposite for tetracycline adsorption: Kinetic and thermodynamic studies. Int J Biol Macromol. 2020;147:258-67. DOI: 10.1016/j.ijbiomac.2020.01.025.
  • [87] Chen W-R, Huang C-H. Adsorption and transformation of tetracycline antibiotics with aluminum oxide. Chemosphere. 2010;79:779-85. DOI: 10.1016/j.chemosphere.2010.03.020.
  • [88] Hami HK, Abbas RF, Abdullwahid Jasim A, Abdul Abass DA, et al. Kinetics study of removal doxycycline drug from aqueous solution using aluminum oxide surface. Egypt J Chem. 2019;62:91-101. DOI: 10.21608/EJCHEM.2019.5499.1483.
  • [89] Mohammed AA, Kareem SL. Adsorption of tetracycline fom wastewater by using pistachio shell coated with ZnO nanoparticles: Equilibrium, kinetic and isotherm studies. Alex Eng J. 2019;58:917-28. DOI: 10.1016/j.aej.2019.08.006.
  • [90] Emzhina V, Kuzin E, Babusenko E, Krutchinina N. Photodegradation of tetracycline in presence of H2O2 and metal oxide based catalysts. J Water Process Eng. 2020:101696. DOI: 10.1016/j.jwpe.2020.101696.
  • [91] Xie D, Zhang H, Jiang M, Huang H, Zhang H, Liao Y, et al. Adsorptive removal of tetracycline from water using Fe(III)-functionalized carbonized humic acid. Chin J Chem Eng. 2020. DOI: 10.1016/j.cjche.2020.06.039.
  • [92] Yan C, Fan L, Chen Y, Xiong Y. Effective adsorption of oxytetracycline from aqueous solution by lanthanum modified magnetic humic acid. Colloids Surf A: Physicochem Eng Aspects. 2020;602:125135. DOI: 10.1016/j.colsurfa.2020.125135.
  • [93] Choi K-J, Kim S-G, Kim S-H. Removal of antibiotics by coagulation and granular activated carbon filtration. J Hazard Mater. 2008;151:38-43. DOI: 10.1016/j.jhazmat.2007.05.059.
  • [94] Wang J, Lei S, Liang L. Preparation of porous activated carbon from semi-coke by high temperature activation with KOH for the high-efficiency adsorption of aqueous tetracycline. Appl Surf Sci. 2020;530:147187. DOI: 10.1016/j.apsusc.2020.147187.
  • [95] Yazidi A, Atrous M, Edi Soetaredjo F, Sellaoui L, Ismadji S, Erto A, et al. Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: Experimental study and modeling analysis. Chem Eng J. 2020;379:122320. DOI: 10.1016/j.cej.2019.122320.
  • [96] Tan G, Mao Y, Wang H, Xu N. A comparative study of arsenic(V), tetracycline and nitrate ions adsorption onto magnetic biochars and activated carbon. Chem Eng Res Design. 2020;159:582-91. DOI: 10.1016/j.cherd.2020.05.011.
  • [97] Ray SS, Gusain R, Kumar N. Chapter 9. One-dimensional carbon nanomaterials-based adsorbents. In: Ray SS, Gusain R, Kumar N, editors. Carbon Nanomaterial-Based Adsorbents for Water Purification. Elsevier; 2020;195-224. DOI: 10.1016/B978-0-12-821959-1.00009-X.
  • [98] Chen C, Feng X, Yao S. Ionic liquid-multi walled carbon nanotubes composite tablet for continuous adsorption of tetracyclines and heavy metals. J Clean Prod. 2020:124937. DOI: 10.1016/j.jclepro.2020.124937.
  • [99] Zhao W, Tian Y, Chu X, Cui L, Zhang H, Li M, et al. Preparation and characteristics of a magnetic carbon nanotube adsorbent: Its efficient adsorption and recoverable performances. Sep Purif Technol. 2021;257:117917. DOI: 10.1016/j.seppur.2020.117917.
  • [100] Ait Hamoudi S, Hamdi B, Brendlé J, Kessaissia Z. Adsorption of lead by geomaterial matrix: Adsorption equilibrium and kinetics. Sep Sci Technol. 2014;49:1416-26. DOI: 10.1080/01496395.2013.879313.
  • [101] Cuevas J, Ruiz A, Fernández R, González-Santamaría D, Angulo M, Ortega A, et al. Authigenic clay minerals from interface reactions of concrete-clay engineered barriers: A new perspective on Mg-clays formation in alkaline environments. Minerals. 2018;8:362. DOI: 10.3390/min8090362.
  • [102] Wang J, Ma B, Tan H, Du C, Chu Z, Luo Z, et al. Hydration and mechanical properties of cement-marble powder system incorporating triisopropanolamine. Constr Build Mater. 2021;266:121068. DOI: 10.1016/j.conbuildmat.2020.121068.
  • [103] Muñoz P, Letelier V, Bustamante MA, Marcos-Ortega J, Sepúlveda JG. Assessment of mechanical, thermal, mineral and physical properties of fired clay brick made by mixing kaolinitic red clay and paper pulp residues. Appl Clay Sci. 2020;198:105847. DOI: 10.1016/j.clay.2020.105847.
  • [104] Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309-19. DOI: 10.1021/ja01269a023.
  • [105] Gibson N, Kuchenbecker P, Rasmussen K, Hodoroaba V-D, Rauscher H. Chapter 4.1 – Volume-specific surface area by gas adsorption analysis with the BET method. In: Hodoroaba V-D, Unger WES, Shard AG, editors. Characterization of Nanoparticles. Elsevier; 2020;265-94. DOI: 10.1016/B978-0-12-814182-3.00017-1.
  • [106] Tripathi M, Bhatnagar A, Mubarak NM, Sahu JN, Ganesan P. RSM optimization of microwave pyrolysis parameters to produce OPS char with high yield and large BET surface area. Fuel. 2020;277:118184. DOI: 10.1016/j.fuel.2020.118184.
  • [107] Guibal E, Milot C, Tobin JM. Metal-anion sorption by chitosan beads: Equilibrium and kinetic studies. Ind Eng Chem Res. 1998;37:1454-63. DOI: 10.1021/ie970395.4.
  • [108] Ramirez A, Ocampo R, Giraldo S, Padilla E, Flórez E, Acelas N. Removal of Cr(VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations. J Environ Chem Eng. 2020;8:103702. DOI: 10.1016/j.jece.2020.103702.
  • [109] Freundlich H. Über die adsorption in Losungen. Z Phys Chem. 1906;57:385-470. DOI: 10.1515/zpch-1907-5723.
  • [110] Walsh K, Mayer S, Rehmann D, Hofmann T, Glas K. Equilibrium data and its analysis with the Freundlich model in the adsorption of arsenic(V) on granular ferric hydroxide. Sep Purif Technol. 2020;243:116704. DOI: 10.1016/j.seppur.2020.116704.
  • [111] Langmuir I. The adsorption of gases on plane surfaces of glass, Micaand platinum. J Am Chem Soc. 1918;40:1361-403. DOI: 10.1021/ja02242a004.
  • [112] Guo X, Wang J. Comparison of linearization methods for modeling the Langmuir adsorption isotherm. J Mol Liq. 2019;296:111850. DOI: 10.1016/j.jiec.2020.01.013.
  • [113] Oubagaranadin JUK, Murthy ZVP. Isotherm modeling and batch adsorber design for the adsorption of Cu(II) on a clay containing montmorillonite. Appl Clay Sci. 2010;50:409-13. DOI: 10.1016/j.clay.2010.09.008.
  • [114] Aguayo-Villarreal IA, Cortes-Arriagada D, Rojas-Mayorga CK, Pineda-Urbina K, Muñiz-Valencia R, González J. Importance of the interaction adsorbent-adsorbate in the dyes adsorption process and DFT modeling. J Mol Struct. 2020;1203:127398. DOI: 10.1016/j.molstruc.2019.127398.
  • [115] Namasivayam C, Senthilkumar, S. Recycling of industrial solid waste for the removal of mercury(II) by adsorption process. Chemosphere. 1997;34:357-75. DOI: 10.1016/S0045-6535(96)00383-9.
  • [116] Akinbulumo OA, Odejobi OJ, Odekanle EL. Thermodynamics and adsorption study of the corrosion inhibition of mild steel by Euphorbia heterophylla L. extract in 1.5 M HCl. Results Materials. 2020;5:100074. DOI: 10.1016/j.rinma.2020.100074.
  • [117] Amari A, Chlendi M, Gannouni A, Bellagi A. Optimised activation of bentonite for toluene adsorption. Appl Clay Sci. 2010;47:457-61. DOI: 10.1016/j.clay.2009.11.035.
  • [118] Sing KSW, Everet D, Haul R, Moscou L, Pierotti R, Rouquerol J, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57:603-19. DOI: 10.1351/pac198557040603.
  • [119] Shahrashoub M, Bakhtiari S. The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: Industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies. Micropor Mesopor Mater. 2021;311:110692. DOI: 10.1016/j.micromeso.2020.110692.
  • [120] Xiao F, Yan B-Q, Zou X-Y, Cao X-Q, Dong L, Lyu X-J, et al. Study on ionic liquid modified montmorillonite and molecular dynamics simulation. Colloids Surf A. Physicochem Eng Asp. 2020;587:124311. DOI: 10.1016/j.colsurfa.2019.124311.
  • [121] Tsai WT, Su TY, Hsu HC, Lin KY, Lin CM, Tai TH. Preparation of mesoporous solids by acid treatment of a porphyritic andesite (wheat-rice-stone). Micropor Mesopor Mater. 2007;102:196-203. DOI: 10.1016/j.micromeso.2006.12.036.
  • [122] Chu Y, Zhu S, Xia M, Wang F, Lei W. Methionine-montmorillonite composite - A novel material for efficient adsorption of lead ions. Adv Powder Technol. 2020;31:708-17. DOI: 10.1016/j.apt.2019.11.026.
  • [123] Barsotti E, Tan SP, Piri M, Chen J-H. Capillary-condensation hysteresis in naturally-occurring nanoporous media. Fuel. 2020;263:116441. DOI: 10.1016/j.fuel.2019.116441.
  • [124] Lu X, Tang B, Zhang Q, Liu L, Fan R, Zhang Z. The presence of Cu facilitates adsorption of tetracycline (TC) onto water hyacinth roots. Int J Environ Res Public Health. 2018;15:1982. DOI: 10.3390/ijerph15091982.
  • [125] Shen H, Ie I-R, Yuan C-S, Hung C-H, Liu C-W. Adsorption phenomenon and kinetic mechanisms of HgO and HgCl2 by innovative composite sulfurized activated carbons. Fuel. 2019;256:115894. DOI: 10.1016/j.fuel.2019.115894.
  • [126] Zhang X, Lin X, He Y, Luo X. Phenolic hydroxyl derived copper alginate microspheres as superior adsorbent for effective adsorption of tetracycline. Int J Biol Macromol. 2019;136:445-59. DOI: 10.1016/j.ijbiomac.2019.05.165.
  • [127] Acemioğlu B. Batch kinetic study of sorption of methylene blue by perlite. Chem Eng J. 2005;106:73-81. DOI: 10.1016/j.cej.2004.10.005.
  • [128] Kannan N, Meenakshisundaram M. Adsorption of Congo Red on various activated carbons. A comparative study. Water Air Soil Pollut. 2002;138:289-305. DOI: 10.1023/A:1015551413378.
  • [129] Kuang Y, Zhang X, Zhou S. Adsorption of Methylene Blue in water onto activated carbon by surfactant modification. Water. 2020;12:587. DOI: 10.3390/w12020587.
  • [130] Pholosi A, Naidoo EB, Ofomaja AE. Intraparticle diffusion of Cr(VI) through biomass and magnetite coated biomass: A comparative kinetic and diffusion study. S Afr J Chem Eng. 2020;32:39-55. DOI: 10.1016/j.sajce.2020.01.005.
  • [131] Pauletto PS, Dotto GL, Salau NPG. Diffusion mechanisms and effect of adsorbent geometry on heavy metal adsorption. Chem Eng Res Des. 2020;157:182-94. DOI: 10.1016/j.cherd.2020.02.031.
  • [132] Bulut E, Özacar M, Şengil İA. Adsorption of malachite green onto bentonite: Equilibrium and kinetic studies and process design. Micropor Mesopor Mater. 2008;115:234-46. DOI: 10.1016/j.micromeso.2008.01.039.
  • [133] Maliyekkal SM, Shukla S, Philip L, Nambi IM. Enhanced fluoride removal from drinking water by magnesia-amended activated alumina granules. Chem Eng J. 2008;140:183-92. DOI: 10.1016/j.cej.2007.09.049.
  • [134] Souza PR, Dotto GL, Salau NPG. Experimental and mathematical modeling of hindered diffusion effect of cationic dye in the adsorption onto bentonite. J Environ Chem Eng. 2019;7:102891. DOI: 10.1016/j.jece.2019.102891.
  • [135] Lin Z, Hu Y, Yuan Y, Hu B, Wang B. Comparative analysis of kinetics and mechanisms for Pb(II) sorption onto three kinds of microplastics. Ecotoxicol Environ Saf. 2021;208:111451. DOI: 10.1016/j.ecoenv.2020.111451.
  • [136] Panday KK, Prasad G, Singh VN. Use of wollastonite for the treatment of Cu(II) rich effluents. Water Air Soil Pollut. 1986;27:287-96. DOI: 10.1007/BF00649410.
  • [137] Moghimi F, Jafari AH, Yoozbashizadeh H, Askari M. Adsorption behavior of Sb(III) in single and binary Sb(III)-Fe(II) systems on cationic ion exchange resin: Adsorption equilibrium, kinetic and thermodynamic aspects. Trans Nonferrous Met Soc. 2020;30:236-48. DOI: 10.1016/S1003-6326(19)65195-2.
  • [138] Mate CJ, Mishra S. Synthesis of borax cross-linked Jhingan gum hydrogel for remediation of Remazol Brilliant Blue R (RBBR) dye from water: Adsorption isotherm, kinetic, thermodynamic and biodegradation studies. Int J Biol Macromol. 2020;151:677-90. DOI: 10.1016/j.ijbiomac.2020.02.192.
  • [139] Wessels JM, Ford WE, Szymczak W, Schneider S. The complexation of tetracycline and anhydrotetracycline with Mg2+ and Ca2+: A spectroscopic study. J Phys Chem B. 1998;102:9323-31. DOI: 10.1021/jp9824050.
  • [140] Soori MM, Ghahramani E, Kazemian H, Al-Musawi TJ, Zarrabi M. Intercalation of tetracycline in nano sheet layered double hydroxide: An insight into UV/VIS spectra analysis. J Taiwan Inst Chem Engineers. 2016;63:271-85. DOI: 10.1016/j.jtice.2016.03.015.
  • [141] Song Y, Sackey EA, Wang H, Wang H. Adsorption of oxytetracycline on kaolinite. PLoS ONE. 2019;14:e0225335-e. DOI: 10.1371/journal.pone.0225335.
  • [142] Yuan L, Yan M, Huang Z, He K, Zeng G, Chen A, et al. Influences of pH and metal ions on the interactions of oxytetracycline onto nano-hydroxyapatite and their co-adsorption behavior in aqueous solution. J Colloid Interface Sci. 2019;541:101-13. DOI: 10.1016/j.jcis.2019.01.078.
  • [143] Gu X, Evans LJ, Barabash SJ. Modeling the adsorption of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) onto montmorillonite. Geochim Cosmochim Acta. 2010;74:5718-28. DOI: 10.1016/j.gca.2010.07.016.
  • [144] Chahardahmasoumi S, Sarvi MN, Jalali SAH. Modified montmorillonite nanosheets as a nanocarrier with smart pH-responsive control on the antimicrobial activity of tetracycline upon release. Appl Clay Sci. 2019;178:105135. DOI: 10.1016/j.clay.2019.105135.
  • [145] Westerhoff P, Yoon Y, Snyder S, Wert E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol. 2005;39:6649-63. DOI: 10.1021/es0484799.
  • [146] Wang B, Xu X, Tang H, Mao Y, Chen H, Ji F. Highly efficient adsorption of three antibiotics from aqueous solutions using glucose-based mesoporous carbon. Appl Surf Sci. 2020;528:147048. DOI: 10.1016/j.apsusc.2020.147048.
  • [147] Huízar-Félix AM, Aguilar-Flores C, Martínez-de-la Cruz A, Barandiarán JM, Sepúlveda-Guzmán S, Cruz-Silva R. Removal of tetracycline pollutants by adsorption and magnetic separation using reduced graphene oxide decorated with α-Fe2O3 nanoparticles. Nanomaterials. 2019;9:313. DOI: 10.3390/nano9030313.
  • [148] Radovic LR, Moreno-Castilla, C., Rivera-Utrilla, J. Carbon materials as adsorbents in aqueous solutions. In: Thrower PA, editor. Chemistry and Physics of Carbon. Marcel Dekker; 2001;27:227-405. ISBN: 9780429152658.
  • [149] Shamsudin MS, Azha SF, Sellaoui L, Badawi M, Al-Ghamdi YO, Bonilla-Petriciolet A, et al. Fabrication and characterization of a thin coated adsorbent for antibiotic and analgesic adsorption: Experimental investigation and statistical physical modelling. Chem Eng J. 2020;401:126007. DOI: 10.1016/j.cej.2020.126007.
  • [150] Coughlin RW, Ezra FS. Role of surface acidity in the adsorption of organic pollutants on the surface of carbon. Environ Sci Technol. 1968;2:291-7. DOI: 10.1021/es60016a002.
  • [151] Yi L, Zuo L, Wei C, Fu H, Qu X, Zheng S, et al. Enhanced adsorption of bisphenol A, tylosin, and tetracycline from aqueous solution to nitrogen-doped multiwall carbon nanotubes via cation-π and π-π electron-donor-acceptor (EDA) interactions. Sci Total Environ. 2020;719:137389. DOI: 10.1016/j.scitotenv.2020.137389.
  • [152] Cunha MR, Lima EC, Lima DR, da Silva RS, Thue PS, Seliem MK, et al. Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: Use of activated carbon derived from Butia catarinensis. J Environ Chem Eng. 2020;8:104506. DOI: 10.1016/j.jece.2020.104506.
  • [153] Yu X, Sun W, Ni J. LSER model for organic compounds adsorption by single-walled carbon nanotubes: Comparison with multi-walled carbon nanotubes and activated carbon. Environ Pollut. 2015;206:652-60. DOI: 10.1016/j.envpol.2015.08.031.
  • [154] Gao B, Li P, Yang R, Li A, Yang H. Investigation of multiple adsorption mechanisms for efficient removal of ofloxacin from water using lignin-based adsorbents. Sci Rep. 2019;9:637. DOI: 10.1038/s41598-018-37206-1.
  • [155] Choi K-J, Kim S-G, Kim C-W, Kim S-H. Determination of antibiotic compounds in water by on-line SPE-LC/MSD. Chemosphere. 2007;66:977-84. DOI: 10.1016/j.chemosphere.2006.07.037.
  • [156] Hernández-Monje D, Giraldo L, Moreno-Piraján JC. Interaction between hydrocarbons C6 and modified activated carbons: Correlation between adsorption isotherms and immersion enthalpies. ACS Omega. 2019;4:19595-604. DOI: 10.1021/acsomega.9b02062.
  • [157] Kerkez-Kuyumcu Ö, Bayazit ŞS, Salam MA. Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets. Ind Eng Chem Res. 2016;36:198-205. DOI: 10.1016/j.jiec.2016.01.040
  • [158] Faysal Hossain MD, Akther N, Zhou Y. Recent advancements in graphene adsorbents for wastewater treatment: Current status and challenges. Chin Chem Lett. 2020;31:2525-38. DOI: 10.1016/j.cclet.2020.05.011.
  • [159] Tessmer CH, Vidic RD, Uranowski LJ. Impact of oxygen-containing surface functional groups on activated carbon adsorption of phenols. Environ Sci Technol. 1997;31:1872-8. DOI: 10.1021/es960474r.
  • [160] Eder S, Müller K, Azzari P, Arcifa A, Peydayesh M, Nyström L. Mass transfer mechanism and equilibrium modelling of hydroxytyrosol adsorption on olive pit-derived activated carbon. Chem Eng J. 2021;404:126519. DOI: 10.1016/j.cej.2020.126519.
  • [161] Lu Q, George A. Sorial. Adsorption of phenolics on activated carbon-impact of pore size and molecular oxygen. Chemosphere. 2004;55:671-9. DOI: 10.1016/j.Chemosphere.2003.11.044.
  • [162] Ang TN, Young BR, Taylor M, Burrell R, Aroua MK, Chen W-H, et al. Enrichment of surface oxygen functionalities on activated carbon for adsorptive removal of sevoflurane. Chemosphere. 2020;260:127496. DOI: 10.1016/j.chemosphere.2020.127496.
  • [163] Uranowski LJ, Tessmer CH, Vidic RD. The effect of surface metal oxides on activated carbon adsorption of phenolics. Water Res. 1998;32:1841-51. DOI: 10.1016/S0043-1354(97)00479-X.
  • [164] Gu C, Karthikeyan KG. Interaction of tetracycline with aluminum and iron hydrous oxides. Environ Sci Technol. 2005;39:2660-7. DOI: 10.1021/es048603o.
  • [165] Yang J, Dou Y, Yang H, Wang D. A novel porous carbon derived from CO2 for high-efficient tetracycline adsorption: Behavior and mechanism. App Surf Sci. 2021;538:148110. DOI: 10.1016/j.apsusc.2020.148110.
  • [166] Hu Y, Chen C, Yang L, Cui J, Hao Q, Sun D. Handy purifier based on bacterial cellulose and Ca-montmorillonite composites for efficient removal of dyes and antibiotics. Carbohydr Polym. 2019;222:115017. DOI: 10.1016/j.carbpol.2019.115017.
  • [167] Liu N, Wang Mx, Liu Mm, Liu F, Weng L, Koopal LK, et al. Sorption of tetracycline on organo-montmorillonites. J Hazard Mater. 2012;225-226:28-35. DOI: 10.1016/j.jhazmat.2012.04.060.
  • [168] Salaa F, Bendenia S, Lecomte-Nana GL, Khelifa A. Enhanced removal of diclofenac by an organohalloysite intercalated via a novel route: Performance and mechanism. Chem Eng J. 2020;396:125226. DOI: 10.1016/j.cej.2020.125226.
  • [169] Mosaleheh N, Sarvi MN. Minimizing the residual antimicrobial activity of tetracycline after adsorption into the montmorillonite: Effect of organic modification. Environ Res. 2020;182:109056. DOI: 10.1016/j.envres.2019.109056.
  • [170] Ahmed MJ. Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Environ Toxicol Pharmacol. 2017;50:1-10. DOI: 10.1016/j.etap.2017.01.004.
  • [171] Khawaja H, Zahir E, Asghar MA, Asghar MA. Graphene oxide decorated with cellulose and copper nanoparticle as an efficient adsorbent for the removal of malachite green. Int J Biol Macromol. 2021;167:23-34. DOI: 10.1016/j.ijbiomac.2020.11.137.
  • [172] Hamdaoui O, Naffrechoux E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J Hazard Mater. 2007;147:381-94. DOI: 10.1016/j.jhazmat.2007.01.021.
  • [173] Arellano-Cárdenas S, López-Cortez S, Cornejo-Mazón M, Mares-Gutiérrez JC. Study of malachite green adsorption by organically modified clay using a batch method. Appl Surf Sci. 2013;280:74-8. DOI: 10.1016/j.apsusc.2013.04.097.
  • [174] Tran HV, Hoang LT, Huynh CD. An investigation on kinetic and thermodynamic parameters of methylene blue adsorption onto graphene-based nanocomposite. Chem Phys. 2020;535:110793. DOI: 10.1016/j.chemphys.2020.110793.
  • [175] Zembrzuska J, Ginter-Kramarczyk D, Zając A, Kruszelnicka I, Michałkiewicz M, Dymaczewski Z, et al. The influence of temperature changes in activated sludge processes on ibuprofen removal efficiency. Ecol Chem Eng S. 2019;26:357-66. DOI: 10.1515/eces-2019-0025.
  • [176] Hamilton AR, Roberts M, Hutcheon GA, Gaskell EE. Formulation and antibacterial properties of clay mineral-tetracycline and doxycycline composites. Appl Clay Sci. 2019;179:105148. DOI: 10.1016/j.clay.2019.105148.
  • [177] Porubcan LS, Serna CJ, White JL, Hem SL. Mechanism of adsorption of clindamycin and tetracycline by montmorillonite. J Pharm Sci. 1978;67:1081-7. DOI: 10.1002/jps.2600670815.
  • [178] Maged A, Iqbal J, Kharbish S, Ismael IS, Bhatnagar A. Tuning tetracycline removal from aqueous solution onto activated 2:1 layered clay mineral: Characterization, sorption and mechanistic studies. J Hazard Mater. 2020;384:121320. DOI: 10.1016/j.jhazmat.2019.121320.
  • [179] Wang H, Zhang J, Wang P, Yin L, Tian Y, Li J. Bifunctional copper modified graphitic carbon nitride catalysts for efficient tetracycline removal: Synergy of adsorption and photocatalytic degradation. Chin Chem Lett. 2020;31:2789-94. DOI: 10.1016/j.cclet.2020.07.043.
  • [180] Chang P-H, Li Z, Jean J-S, Jiang W-T, Wang C-J, Lin K-H. Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite. Appl Clay Sci. 2012;67-68:158-63. DOI: 10.1016/j.clay.2011.11.004.
  • [181] Zhao Y, Gu X, Li S, Han R, Wang G. Insights into tetracycline adsorption onto kaolinite and montmorillonite: experiments and modeling. Environ Sci Pollut. 2015;22:17031-40. DOI: 10.1007/s11356-015-4839-2.
  • [182] Wang W, Lu T, Chen Y, Tian G, Sharma VK, Zhu Y, et al. Mesoporous silicate/carbon composites derived from dye-loaded palygorskite clay waste for efficient removal of organic contaminants. Sci Total Environ. 2019;696:133955. DOI: 10.1016/j.scitotenv.2019.133955.
  • [183] Parolo ME, Savini MC, Vallés JM, Baschini MT, Avena MJ. Tetracycline adsorption on montmorillonite: pH and ionic strength effects. Appl Clay Sci. 2008;40:179-86. DOI: 10.1016/j.clay.2007.08.003.
  • [184] Abdel-Karim A, El-Naggar ME, Radwan EK, Mohamed IM, Azaam M, Kenawy E-R. High-performance mixed-matrix membranes enabled by organically/inorganic modified montmorillonite for the treatment of hazardous textile wastewater. Chem Eng J. 2021;405:126964. DOI: 10.1016/j.cej.2020.126964.
  • [185] Zhao Y, Tong F, Gu X, Gu C, Wang X, Zhang Y. Insights into tetracycline adsorption onto goethite: Experiments and modeling. Sci Total Environ. 2014;470-471:19. DOI: 10.1016/j.scitotenv.2013.09.059.
  • [186] Gopal G, Sankar H, Natarajan C, Mukherjee A. Tetracycline removal using green synthesized bimetallic nZVI-Cu and bentonite supported green nZVI-Cu nanocomposite: A comparative study. J Environ Manage. 2020;254:109812. DOI: 10.1016/j.jenvman.2019.109812.
  • [187] Huang L, Sun Y, Wang W, Yue Q, Yang T. Comparative study on characterization of activated carbons prepared by microwave and conventional heating methods and application in removal of oxytetracycline (OTC). Chem Eng J. 2011;171:1446-53. DOI: 10.1016/j.cej.2011.05.041.
  • [188] Chang J, Shen Z, Hu X, Schulman E, Cui C, Guo Q, et al. Adsorption of tetracycline by shrimp shell waste from aqueous solutions: adsorption isotherm, kinetics modeling, and mechanism. ACS Omega. 2020;5:3467-77. DOI: 10.1021/acsomega.9b03781.
  • [189] Kim S, Eichhorn P, Jensen JN, Weber AS, Aga DS. Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environ Sci Technol. 2005;39:5816-23. DOI: 10.1021/es050006u.
  • [190] Zhang L, Song X, Liu X, Yang L, Pan F, Lv J. Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chem Eng J. 2011;178:26-33. DOI: 10.1016/j.cej.2011.09.127.
  • [191] Ofudje EA, Adeogun IA, Idowu MA, Kareem SO, Ndukwe NA. Simultaneous removals of cadmium(II) ions and reactive yellow 4 dye from aqueous solution by bone meal-derived apatite: kinetics, equilibrium and thermodynamic evaluations. Anal Sci Technol. 2020;11:7. DOI: 10.1186/s40543-020-0206-0.
  • [192] Shao L, Ren Z, Zhang G, Chen L. Facile synthesis, characterization of a MnFe2O4/activated carbon magnetic composite and its effectiveness in tetracycline removal. Mater Chem Phys. 2012;135:16-24. DOI: 10.1016/j.matchemphys.2012.03.035.
  • [193] Aswin Kumar I, Viswanathan N. Fabrication of zirconium(IV) cross-linked alginate/kaolin hybrid beads for nitrate and phosphate retention. Arab J Chem. 2020;13:4111-25. DOI: 10.1016/j.arabjc.2019.06.006.
Uwagi
1. This work was carried out at the IS2M institute, at the laboratory of Equipe des materiaux à porositécontrôllée de Mulhouse France, and funded by the Ministry of Higher Education and Research (Algeria).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e38224a6-cfcb-41ac-9a3f-9eb946bf6070
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.