Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 21, nr 2(68) | 40--64
Tytuł artykułu

Internal flow behaviour and microstructural evolution of the bobbin-FSW welds: thermomechanical comparison between 1xxx and 3xxx aluminium grades

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influences of processing parameters and tool feature on the microstructure of AA1100 and AA3003 aluminium alloys were investigated using bobbin friction stir welding (BFSW). The research includes flow visualization and microstructural evolution of the weld texture using the metallographic measurement method. Results indicated that the operational parameters of the welding (e.g. feed rate, rotating speed) and the geometry of the tool can directly affect the flow patterns of the weld structure. The microscopic details revealed by the optical and electron microscope imply the dynamic recrystallization including grain refinement and precipitation mechanisms within the stirring zone of the weld region. The microscopic observations for the weld samples show a better performance of the fully-featured tool (tri-flat threaded pin and scrolled shoulders) compared to the simple tool without inscribed surface features. The fully-featured tool resulted in a more uniform thermomechanical plastic deformation within the weld structure along with the precipitation hardening and the homogeneity of the microstructure.
Wydawca

Rocznik
Strony
40--64
Opis fizyczny
Bibliogr. 38 poz., tab., il., fot.
Twórcy
  • University of Canterbury, Department of Mechanical Engineering, Christchurch 8041, New Zealand
autor
  • Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, Durian Tunggal 76100, Malaysia
autor
  • University of Canterbury, Department of Mechanical Engineering, Christchurch 8041, New Zealand
Bibliografia
  • 1. Thomas, W.; Nicholas, E.; Needham, J.; Murch, M.; Temple-Smith, P.; Dawes, C. Friction stir butt welding, international patent application no. PCT/GB92 Patent application 1991.
  • 2. Thomas, W.; Wiesner, C.; Marks, D.; Staines, D. Conventional and bobbin friction stir welding of 12% chromium alloy steel using composite refractory tool materials. Science and Technology of Welding and Joining, 2009, 14, 247-253.
  • 3. Threadgill, P.; Leonard, A.; Shercliff, H.; Withers, P. Friction stir welding of aluminium alloys. International Materials Reviews, 2009, 54, 49-93.
  • 4. Threadgill, P.L.; Ahmed, M.; Martin, J.P.; Perrett, J.G.; Wynne, B.P. The use of bobbin tools for friction stir welding of aluminium alloys, Materials Science Forum, 638 2010 1179-1184.
  • 5. Colligan, K. Material flow behavior during friction welding of aluminum. Welding Journal, 1999, 75, 229-237.
  • 6. Hilgert, J.; Dos Santos, J.; Huber, N. Shear layer modelling for bobbin tool friction stir welding. Science and Technology of Welding and Joining, 2012, 17, 454-459.
  • 7. Hilgert, J.; Hütsch, L.L.; dos Santos, J.; Huber, N. Material flow around a bobbin tool for friction stir welding, Excerpt from the Proceedings of the COMSOL Conference, 2010.
  • 8. Hilgert, J.; Schmidt, H.; Dos Santos, J.; Huber, N. Thermal models for bobbin tool friction stir welding. Journal of Materials Processing Technology, 2011, 211, 197-204.
  • 9. Cui, L.; Yang, X.; Zhou, G.; Xu, X.; Shen, Z. Characteristics of defects and tensile behaviors on friction stir welded AA6061-T4 T-joints. Materials Science and Engineering: A, 2012, 543, 58-68.
  • 10. Durga, B.S. Research scholar optimization of friction stir welding parameters (tool material, tool geometry and tool speed) on aluminium alloys 6061 using Taguchi method. Advanced Research Journals of Science and Technology 2018, 5, 385-407.
  • 11. Dialami, N.; Chiumenti, M.; Cervera, M.; Agelet de Saracibar, C.; Ponthot, J.P. Material flow visualization in friction stir welding via particle tracing. International Journal of Material Forming, 2015, 8, 167-181.
  • 12. Dialami, N.; Cervera, M.; Chiumenti, M. Effect of the tool tilt angle on the heat generation and the material flow in friction stir welding. Metals, 2019, 9, 28.
  • 13. He, X.; Gu, F.; Ball, A. A review of numerical analysis of friction stir welding. Progress in Materials Science 2014, 65, 1-66.
  • 14. Hasan, A.F.; Bennett, C.J.; Shipway, P.H. A numerical comparison of the flow behaviour in friction stir welding (FSW) using unworn and worn tool geometries. Materials & Design, 2015, 87, 1037-1046.
  • 15. Egea, A.S.; Rodriguez, A.; Celentano, D.; Calleja, A.; de Lacalle, L.L. Joining metrics enhancement when combining FSW and ball-burnishing in a 2050 aluminium alloy. Surface and Coatings Technology, 2019, 367, 327-335.
  • 16. Sued, M.; Pons, D.; Lavroff, J.; Wong, E.-H. Design features for bobbin friction stir welding tools: Development of a conceptual model linking the underlying physics to the production process. Materials & Design, 2014, 54, 632-643.
  • 17. Thomas, W.; Nicholas, E. Friction stir welding for the transportation industries. Materials & Design, 1997, 18, 269-273.
  • 18. Wang, G.-Q.; Zhao, Y.-H.; Tang, Y.-Y. Research progress of bobbin tool friction stir welding of aluminum alloys: A review. Acta Metallurgica Sinica (English Letters), 2020, 33(1), 1-17.
  • 19. Fuse, K.; Badheka, V. Bobbin tool friction stir welding: A review. Science and Technology of Welding and Joining, 2019, 24, 277-304.
  • 20. Gadakh, V.S.; Adepu, K. Heat generation model for taper cylindrical pin profile in FSW. Journal of Materials Research and Technology, 2013, 2, 370-375.
  • 21. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Development of metallographic etchants for the microstructure evolution of A6082-T6 BFSW welds. Metals, 2017, 7, 423.
  • 22. Tamadon, A.; Pons, D.J.; Clucas, D.; Sued, K. Internal material flow layers in AA6082-T6 butt-joints during bobbin friction stir welding. Metals, 2019, 9, 1059.
  • 23. Sued, M.K. Fixed bobbin friction stir welding of marine grade aluminium. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2015.
  • 24. Tamadon, A.; Pons, D.J.; Clucas, D.; Sued, K. Texture evolution in AA6082-T6 BFSW welds: Optical microscopy and EBSD characterisation. Materials, 2019, 12, 3215.
  • 25. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Thermomechanical grain refinement in AA6082-T6 thin plates under bobbin friction stir welding. Metals, 2018, 8, 375.
  • 26. Chen, S.; Lu, A.; Yang, D.; Lu, S.; Dong, J.; Dong, C. In: Analysis on flow pattern of bobbin tool friction stir welding for 6082 aluminum, Proceedings of the 1st International joint symposium on joining and welding, 2013; Elsevier: 353-358.
  • 27. Tamadon, A.; Baghestani, A.; Bajgholi, M.E. Influence of WC-based pin tool profile on microstructure and mechanical properties of AA1100 FSW welds. Technologies, 2020, 8, 34.
  • 28. Kerrar, G.; Merah, N.; Shuaib, A.N.; Fadi, A.-B.; Bazoune, A. Experimental and numerical investigations of friction stir welding of aluminum to copper. In: Applied mechanics, behavior of materials, and engineering systems, Springer: 2017; 129-138.
  • 29. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Formation mechanisms for entry and exit defects in bobbin friction stir welding. Metals, 2018, 8, 33.
  • 30. Tamadon, A. Characterization of flow-based bobbin friction stir welding process. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2019.
  • 31. Tamadon, A.; Pons, D.; Clucas, D. Analogue modelling of flow patterns in bobbin friction stir welding by the dark-field/bright-field illumination method. Advances in Materials Science, 2020, 20, 56-70.
  • 32. Tamadon, A.; Pons, D.J.; Clucas, D. Structural anatomy of tunnel void defect in bobbin friction stir welding, elucidated by the analogue modelling. Applied System Innovation, 2020, 3, 2.
  • 33. Tamadon, A.; Pons, D.J.; Clucas, D. Flow-based anatomy of bobbin friction-stirred weld; AA6082-T6 aluminium plate and analogue plasticine model. Applied Mechanics, 2020, 1, 3-19.
  • 34. Krishnan, K. On the formation of onion rings in friction stir welds. Materials Science and Engineering: A, 2002, 327, 246-251.
  • 35. Teimournezhad, J.; Masoumi, A. Experimental investigation of onion ring structure formation in friction stir butt welds of copper plates produced by non-threaded tool pin. Science and Technology of Welding and Joining, 2010, 15, 166-170.
  • 36. Tamadon, A.; Pons, D.; Chakradhar, K.; Kamboj, J.; Clucas, D.; Clucas, D. 3D-printed tool shoulder design for the analogue modelling of bobbin friction stir weld joint quality. Advances in Materials Science, 2021, 21, 27-42.
  • 37. Tamadon, A.; Pons, D.; Clucas, D. EBSD characterization of bobbin friction stir welding of AA6082-T6 aluminium alloy. Advances in Materials Science, 2020, 20, 49-74.
  • 38. Tamadon, A.; Pons, D.J.; Clucas, D. AFM characterization of stir-induced micro-flow features within the AA6082-T6 BFSW welds. Technologies, 2019, 7, 80.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e3545ac9-4740-4908-960b-c9b5f2870f93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.