Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | nr 7 | 216--221
Tytuł artykułu

Anthocyanins – corrosion inhibitors straight from nature

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Antocyjany – inhibitory korozji prosto z natury
Języki publikacji
EN
Abstrakty
EN
The growing environmental awareness is also reflected in the area of corrosion protection. Due to their full renewable nature and environmentally friendly profile, anthocyanins are undoubtedly a group of compounds that perfectly fit into the current trends related to the search for new, green corrosion inhibitors. In this article, the state of the art in the use of anthocyanin-rich plant extracts as corrosion inhibitors was briefly reviewed. Based on the results of works published in the past decade, the most important information about the protection of metal materials with the use of these compounds has been presented. The key results of analyzes enabling the monitoring of corrosion processes were described. The mechanism of inhibition of corrosive destruction, identical for anthocyanins, has been explained in an accessible way. Because of the specificity of their chemical structure, anthocyanins have the ability to strongly adsorb on the metal surface. Bonded to the substrate, they form a protective layer with a barrier effect. Anthocyanins play the role of mixed inhibitors, simultaneously inhibiting anode and cathode processes with an efficiency of up to 90%.
PL
Rosnąca świadomość ekologiczna znajduje odbicie również w sektorze ochrony przed korozją. Z uwagi na pełną odnawialność oraz przyjazny dla środowiska profil grupą związków doskonale wpisujących się w aktualne trendy związane z poszukiwaniem nowych, zielonych inhibitorów korozji są bez wątpienia antocyjany. W niniejszym artykule dokonano krótkiego przeglądu aktualnego stanu wiedzy w zakresie stosowania ekstraktów roślinnych bogatych w antocyjany w charakterze inhibitorów korozji. Korzystając z wyników prac opublikowanych w ostatniej dekadzie, przybliżono najważniejsze informacje dotyczące ochrony materiałów metalowych z wykorzystaniem tych związków. Przedstawiono kluczowe wyniki analiz umożliwiających monitorowanie procesów korozyjnych. W przystępny sposób wyjaśniono właściwy dla antocyjanów mechanizm inhibicji niszczenia korozyjnego. Ze względu na swoistość struktury chemicznej antocyjany wykazują zdolność do silnej adsorpcji na powierzchni metalu. Związane z podłożem, tworzą warstwę ochronną o działaniu barierowym. Antocyjany pełnią funkcję inhibitorów mieszanych, hamując równocześnie procesy anodowe i katodowe z wydajnością sięgającą nawet 90%.
Rocznik
Tom
Strony
216--221
Opis fizyczny
Bibliogr. 32 poz., fot., tab.
Twórcy
  • Sieć Badawcz Łukasiewicz- Instytut Inżynierii Materiałów Polimerowych i Barwników
  • Centrum Farb i Tworzyw, Gliwice
autor
  • Sieć Badawcz Łukasiewicz- Instytut Metali Nieżelaznych
  • Centrum Materiałów Proszkowych i Kompozytowych, Gliwice
Bibliografia
  • [1] Zhen Yu, Jiming Hu, Huimin Meng. 2020. “A Review of Recent Developments in Coating Systems for Hot-Dip Galvanized Steel”. Frontiers in Materials 7: 74. DOI: 10.3389/fmats.2020.00074.
  • [2] M. Zubielewicz, E. Langer, A. Królikowska, L. Komorowski, M. Wanner, K. Krawczyk, L. Aktas, M. Hilt. 2021. “Concepts of Steel Protection by Coatings with a Reduced Content of Zinc Pigments”. Progress in Organic Coatings 161: 106471. DOI: 10.1016/j.porgcoat.2021.106471.
  • [3] Hai Hu, Yi He, Zhihang Long, Yingqing Zhan. 2017. “Synergistic Effect of Functional Carbon Nanotubes and Graphene Oxide on the Anti-Corrosion Performance of Epoxy Coating”. Polymers for Advanced Technologies 28 (6): 754–762. DOI: 10.1002/pat.3977.
  • [4] E. Armelin, R. Pla, F. Liesa, X. Ramis, J.I. Iribarren, C. Alemán. 2008. “Corrosion Protection with Polyaniline and Polypyrrole as Anticorrosive Additives for Epoxy Paint”. Corrosion Science 50 (3): 721–728. DOI: 10.1016/j.corsci.2007.10.006.
  • [5] R.G. Cooper. 2008. “Zinc Toxicology Following Particulate Inhalation”. Indian Journal of Occupational and Environmental Medicine 12 (1): 10–13. DOI: 10.4103/0019-5278.40809.
  • [6] Ming Chen, Shuang Zhou, Yi Zhu, Yingzhu Sun, Guangming Zeng, Chunping Yang, Piao Xu, Ming Yan, Zhifeng Liu, Wei Zhang. 2018. “Toxicity of Carbon Nanomaterials to Plants, Animals and Microbes: Recent Progress from 2015–Present”. Chemosphere 206: 255–264. DOI: 10.1016/j.chemosphere.2018.05.020.
  • [7] Ch. Verma, E. Ebenso, I. Bahadur, M.A. Quraishi. 2018. “An Overview on Plant Extracts as Environmental Sustainable and Green Corrosion Inhibitors for Metals and Alloys in Aggressive Corrosive Media”. Journal of Molecular Liquids 266: 577–590. DOI: 10.1016/j.molliq.2018.06.110.
  • [8] L. Yang (ed.). 2020. Techniques for Corrosion Monitoring. Cambridge, United Kingdom: Woodhead Publishing.
  • [9] B. Salehi, J. Sharifi-Rad, F. Cappellini, Ž. Reiner, D. Zorzan, M. Imran, B. Sener, M. Kilic, M. El-Shazly, N.M. Fahmy, E. Al-Sayed, M. Martorell, Ch. Tonelli, K. Petroni, A.O. Docea, D. Calina, A. Maroyi. 2020. “The Therapeutic Potential of Anthocyanins: Current Approaches Based on Their Molecular Mechanism of Action”. Frontiers in Pharmacology 11: 1300. DOI: 10.3389/fphar.2020.01300.
  • [10] A. Castañeda-Ovando, P.H. Ma. de Lourdes Pacheco-Hernández, Ma. Elena Páez-Hernández, J.A. Rodríguez, C.A. Galán-Vidal. 2009. “Chemical Studies of Anthocyanins: A Review”. Food Chemistry 113 (4): 859–871. DOI: 10.1016/j.foodchem.2008.09.001.
  • [11] Jin-Ming Kong, Lian-Sai Chia, Ngoh-Khang Goh, Tet-Fatt Chia, R. Brouillard. 2003. “Analysis and Biological Activities of Anthocyanins”. Phytochemistry 64 (5): 923–933. DOI: 10.1016/S0031-9422(03)00438-2.
  • [12] T.C. Wallace, M.M. Giusti. 2015. “Anthocyanins”. Advances in Nutrition 6 (5): 620–622. DOI: 10.3945/an.115.009233.
  • [13] A. Samanta, G. Das, S.K. Das. 2011. “Roles of Flavonoids in Plants”. International Journal of Pharmaceutical Science and Technology 6 (1): 12–35.
  • [14] M. Horbowicz, R. Kosson, A. Grzesiuk, H. Dębski. 2008. “Anthocyanins of Fruits and Vegetables – Their Occurrence, Analysis and Role in Human Nutrition”. Vegetable Crops Research Bulletin 68 (1): 5–22. DOI: 10.2478/v10032-008-0001-8.
  • [15] G.T. Sigurdson, P. Tang, M.M. Giusti. 2017. “Natural Colorants: Food Colorants from Natural Sources”. Annual Review of Food Science and Technology 8 (1): 261–280. DOI: 10.1146/annurev-food-030216-025923.
  • [16] S. Roy, J.-W. Rhim. 2021. “Anthocyanin Food Colorant and Its Application in pH-Responsive Color Change Indicator Films”. Critical Reviews in Food Science and Nutrition 61 (14): 2297–2325. DOI: 10.1080/10408398.2020.1776211.
  • [17] H. Speer, N.M. D’Cunha, N.I. Alexopoulos, A.J. McKune, N. Naumovski. 2020. “Anthocyanins and Human Health – A Focus on Oxidative Stress, Inflammation and Disease”. Antioxidants 9 (5): 366. DOI: 10.3390/antiox9050366.
  • [18] A. Miralrio, A.E. Vázquez. 2020. “Plant Extracts as Green Corrosion Inhibitors for Different Metal Surfaces and Corrosive Media: A Review”. Processes 8 (8): 942. DOI: 10.3390/pr8080942.
  • [19] L. Hamadi, S. Mansouri, K. Oulmi, A. Kareche. 2018. “The Use of Amino Acids as Corrosion Inhibitors for Metals: A Review”. Egyptian Journal of Petroleum 27 (4): 1157–1165. DOI: 10.1016/j.ejpe.2018.04.004.
  • [20] N. Vaszilcsin, V. Ordodi, A. Borza. 2012. “Corrosion Inhibitors from Expired Drugs”. International Journal of Pharmaceutics 431 (1–2): 241–244. DOI: 10.1016/j.ijpharm.2012.04.015.
  • [21] R.S. Peres, A.V. Zmozinski, F.R. Brust, A.J. Macedo, E. Armelin, C. Alemán, C.A. Ferreira. 2018. “Multifunctional Coatings Based on Silicone Matrix and Propolis Extract”. Progress in Organic Coatings 123: 223–231. DOI: 10.1016/j.porgcoat.2018.07.015.
  • [22] A.K. Singh, M.A. Quraishi. 2009. “Effect of 2,2′ benzothiazolyl disulfide on the corrosion of mild steel in acid media”. Corrosion Science 51 (11): 2752–2760. DOI: 10.1016/j.corsci.2009.07.011.
  • [23] O.K. Abiola, A.O. James. 2010. “The Effects of Aloe Vera Extract on Corrosion and Kinetics of Corrosion Process of Zinc in HCl Solution”. Corrosion Science 52 (2): 661–664. DOI: 10.1016/j.corsci.2009.10.026.
  • [24] S. Hadisaputra, A.A. Purwoko, S. Hamdiani, N. Nuryono. 2019. “Which Anthocyanin Is the Best Corrosion Inhibitor?”. IOP Conference Series Materials Science and Engineering 509 (1): 012129. DOI: 10.1088/1757-899X/509/1/012129.
  • [25] A.H. Al-Moubaraki. 2015. “Corrosion Protection of Mild Steel in Acid Solutions Using Red Cabbage Dye”. Chemical Engineering Communications 202 (8): 1069–1080. DOI: 10.1080/00986445.2014.907565.
  • [26] L.B. Furtado, J.C. Rocha, J.A.C.P. Gomes, R.C. Nascimento, P.R. Seidl, M.J.O.C. Guimarães, R.V. Tonon, L.M.C. Cabral, G.N. Mattos. 2020. “Storage Time Evaluation of a Residue from Wine Industry as a Microencapsulated Corrosion Inhibitor for 1 M HCl”. Materials Chemistry and Physics 256: 123739. DOI: 10.1016/j.matchemphys.2020.123739.
  • [27] A. Thomas, M. Prajila, K.M. Shainy, A. Joseph. 2020. “A Green Approach to Corrosion Inhibition of Mild Steel in Hydrochloric Acid Using Fruit Rind Extract of Garcinia indica (Binda)”. Journal of Molecular Liquids 312 (1): 113369. DOI: 10.1016/j.molliq.2020.113369.
  • [28] A. Thomas, Jeeja Rani AT, A. Joseph. 2021. “Extended Protection of Mild Steel in Molar HCl Using the Garcinia indica Fruit Rind Extract (GIW) and Iodide Ions; Electrochemical, Thermodynamic and Kinetic studies”. Journal of the Indian Chemical Society 98(10): 100167. DOI: 10.1016/j.jics.2021.100167.
  • [29] Yidi Teng, Weiwei Zhang, Meifang Wang, Chenhui Yu, Yulong Ma, Jiuhui Bian, Xifeng Yang, Debao Zhang. 2021. “Anthocyanin as Sustainable and Non-Toxic Corrosion Inhibitor for Mild Steel in HCl Media: Electrochemical, Surface Morphology and Theoretical Investigations”. Journal of Molecular Liquids 344: 117721. DOI: 10.1016/j.molliq.2021.117721.
  • [30] A. Pal, Ch. Das. 2022. “New Eco-Friendly Anti-Corrosion Inhibitor of Purple Rice Bran Extract for Boiler Quality Steel: Experimental and Theoretical Investigations”. Journal of Molecular Structure 1251: 131988. DOI: 10.1016/j.molstruc.2021.131988.
  • [31] S. Rajendran, A. Suriya Prabha, N. Vijaya, T. Umasankareswari, A. Krishnaveni, J. Jeyasundari, K. Kavitha, H. Benita Sherine, N. Renuga Devi. 2020. “Corrosion Inhibition by Flower Extracts – At a Glance”. Journal of Chemical Science and Chemical Engineering 1 (1): 29–36. DOI: 10.47890/JCSCE/SRAJENDRAN/2020/10082115.
  • [32] Sh. Mukhopadhyay, S. Dasgupta, S. Roy, A. Mondal, D. Sukul, S. Ghosal, U. Adhikari. 2021. “Corrosion Inhibition of Mild Steel by Aqueous Leaf Extract of Purple Hedge Plant: Experimental and Theoretical Investigation”. Journal of Bio- and Tribo-Corrosion 7: 139. DOI: 10.1007/s40735-021-00577-6.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e3422098-d404-4f0b-90fa-b0c27ceb48f3