Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 24, nr 8 | 209--217
Tytuł artykułu

Climate Change Impact on the Streamflow for the Nam Ou Catchment, North Laos in the Mekong Basin

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Southeast Asia, in general, and the Mekong Basin (MB), in particular, with its typically warm and wet climate, face water resource challenges. A deep understanding of the future streamflow is needed to manage water resource successfully. Data scarcity and topographical differences have made it difficult to accurately reproduce the streamflow regime in the sub-catchment of the MB. The main goal of this study was to provide the first assessments of streamflow impacts due to climate change for the Nam Ou Basin, a primary Lao sub-catchment of the MB, employing the most updated Couple Model Intercomparison Project Phase 6 (CMIP6) climate scenarios. The MIKE-NAM (Nedbor Affstromnings Model), the observed hydro-meteorological data, and the Moderate Resolution Imaging Spectroradiometer (MODIS) evaporation were employed. The climate change scenarios showed increases in seasonal and annual river discharges with different magnitudes in the future. The annual streamflow was expected to rise by 0.31%, 16.75%, and 38.31% in the 2040s as well as 23.35%, 32.80%, and 74.82% in the 2080s under three scenarios, respectively. The wet season in the Nam Ou Basin occurs one month earlier. The wet season flows increased by 5.6–76.9%, and the dry season flow showed a contrasting directional change, decreased by 8.4%. The annual peak discharge also exhibited an increase of 3.2–14.6% for the SSP1-1.9 scenario in the mid-century (the 2040s), and end-century (2080s). Those figures are 8.9–19.7% for the SSP2-4.5, and 23.3–48.9% for the SSP5-8.5 scenario, respectively. The study revealed the streamflow variation under the effect of climate change in the Nam Ou Basin, a sub-catchment of the MB, highlighting the need for special consideration in disaster risk mitigation, especially under climate change.
Słowa kluczowe
Wydawca

Rocznik
Strony
209--217
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • University of Science, Vietnam National University, Hanoi, 334, Nguyen Trai, Thanh Xuan, Hanoi, Vietnam, nguyenynhu@hus.edu.vn
  • University of Science, Vietnam National University, Hanoi, 334, Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
  • Vietnam National University of Forestry, QL21, TT. Xuan Mai, Chuong My, Hanoi, Vietnam
Bibliografia
  • 1. Anh D.T., Hoang L.P., Bui M.D., Rutschmann P. 2018. Modelling seasonal flows alteration in the Vietnamese Mekong Delta under upstream discharge changes, rainfall changes and sea level rise. International Journal of River Basin Management 17(4), 435–449. DOI:10.1080/15715124.2018.1505735
  • 2. Danish Hydraulic Institute (DHI). 2009. Mike 11: a modeling system for rivers and channels, reference manual, 278–325
  • 3. Danish Hydraulic Institute (DHI). 2017. DHI MIKE11_UserManual.pdf. https://manuals.mikepoweredbydhi.help/2017/Water_Resources/MIKE11_UserManual.pdf. Accessed 16 August 2022
  • 4. Golmohammadi G., Prasher S., Madani A., Rudra R. 2014. Evaluating Three Hydrological Distributed Watershed Models: MIKE-SHE, APEX, SWAT. Hydrology 1, 20–39. DOI: 10.3390/hydrology1010020
  • 5. Hu Y., Maskey S., Uhlenbrook S. 2013. Downscaling daily precipitation over the Yellow River source region in China: a comparison of three statistical downscaling methods. Theor Appl Climatol, 112, 447–460. DOI: 10.1007/s00704-012-0745-4
  • 6. Ich L., Sok T., Kaing V., Try S., Chan R., Oeurng C. 2022. Climate change impact on water balance and hydrological extremes in the Lower Mekong Basin: a case study of Prek Thnot River Basin, Cambodia, 13(8), 2911–2939. DOI: 10.2166/wcc.2022.051
  • 7. Kinouchi T. 2010. Hydrological response of land use change in mountainous sub-watersheds of the Mekong river basin. In: Proceedings of the 5th conf of Asia Pacific Association of Hydrology and Water Resources (Hanoi, Vietnam), 66–72.
  • 8. Khoi D.N., Nguyen V.T., Sam T.T., Ky Phung, N., Thi Bay N. 2020. Responses of river discharge and sediment load to climate change in the transboundary Mekong River Basin. Water Environ J., 34, 367–380.
  • 9. Lacombe G., Pierret A., Hoanh C.T., Sengtaheuanghoung O., Noble A.D. 2010. Conflict, migration and landcover changes in Indochina: a hydrological assessment. Ecohydrology, 3(4), 382–391.
  • 10. Lauri H., Moel H de, Ward P.J., Räsänen T.A., Keskinen M., Kummu M. 2012. Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge. Hydrol Earth Syst Sci, 16, 4603–4619. DOI: 10.5194/hess-16-4603-2012
  • 11. Lehner F., Coats S., Stocker T.F., Pendergrass A.G., Sanderson B.M., Raible C.C., Smerdon J.E. 2017. Projected drought risk in 1.5°C and 2°C warmer climates. Geophys Res Lett, 44(14), 7419–7428. DOI: 10.1002/2017GL074117
  • 12. Li C., Fang H. 2021. Assessment of climate change impacts on the streamflow for the Mun River in the Mekong Basin, Southeast Asia: Using SWAT model. Catena, 201, 105199. DOI: 10.1016/j.catena.2021.105199
  • 13. Lu X.X. 2005. Spatial variability and temporal change of water discharge and sediment flux in the lower Jinsha tributary: impact of environmental changes. River Res Appl, 21, 229–243.
  • 14. Ma D., Qian B., Gu H., Sun Z., Xu Y. 2021. Assessing climate change impacts on streamflow and sediment load in the upstream of the Mekong River River basin. Int. J. Climatol., 41, 3391–3410. DOI: 10.1002/joc.7025
  • 15. Mouche E., Moussu F., Mugler C., Ribolzi O., Valentin C., Sengtahevanghoung O., Lacombe G. 2014. Impact of land-use change on the hydrology of North Lao PDR watersheds. Hydrology in a Changing World: Environmental and Human Dimensions Proceedings of FRIEND-Water 2014, Montpellier, France, October 2014 (IAHS Publ. 363, 2014).
  • 16. Mekong River Commission (MRC). 2017. Summary of the Basin-Wide Assessments of Climate Change Impacts on Water and Waterrelated Resources in the Lower Mekong Basin; MRC: Vientiane, Laos.
  • 17. Oeurng C., Cochrane T.A., Arias M.E., Shrestha B., Piman T. 2016. Assessment of changes in riverine nitrate in the Sesan, Srepok and Sekong tributaries of the lower Mekong River basin. J Hydrol Region Stud, 8, 95–111. DOI: 10.1016/j.ejrh.2016.07.004
  • 18. O’Neill B.C., et al. 2020. Achievements and needs for the climate change scenario framework. Nat. Clim. Chang., 10, 1074–1084.
  • 19. Peng S., Wang C., Li Z. et al. 2023. Climate change multi-model projections in CMIP6 scenarios in Central Hokkaido, Japan. Sci Rep, 13, 230. DOI: 10.1038/s41598-022-27357-7
  • 20. Peter-John M., 2016. Cumulative impact assessment of the Nam Ou hydropower cascade. https://www.ifc.org/wps/wcm/connect/d7b1c100-4c23-4931-802e-32fc43e1e26b/Cumulative+Impact+Assessment+of+the+Nam+Ou+hydropower+1+PJc.pdf?MOD=AJPERES&CVID=ltRkE6G. Accessed 16 August 2022
  • 21. Shrestha S., Bhatta B., Shrestha M., Shrestha P.K. 2018. Integrated assessment of the climate and landuse change impact on hydrology and water quality in the Songkhram River Basin, Thailand. Sci Total Environ, 643, 1610–1622.
  • 22. Shrestha B., Babel M.S., Maskey S., van Griensven A., Uhlenbrook S., Green A., Akkharath I. 2013. Impact of climate change on sediment yield in the Mekong River Basin: a case study of the Nam Ou Basin, Lao PDR. Hydrol Earth Syst Sci Discuss, 17, 1–20.
  • 23. Tan M.L., Ibrahim A.L., Yusop Z., Chua V.P., Chan N.W. 2017. Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River Basin, Malaysia. Atmos Res, 189, 1–10.
  • 24. Try S., Tanaka S., Tanaka K. et al. 2020. Assessing the effects of climate change on flood inundation in the lower Mekong Basin using high-resolution AGCM outputs. Prog Earth Planet Sci, 7(34). DOI: 10.1186/s40645-020-00353-z
  • 25. U.S. Geological Survey (USGS). 2020. https://lp-daac.usgs.gov/products/mod15a2hv006/. Accessed 16 August 2022.
  • 26. Varouchakis E.A., Corzo G.A., Karatzas G.P. 2018. Spatio-temporal analysis of annual rainfall in Crete, Greece. Acta Geophys, 66, 319–328. DOI: 10.1007/s11600-018-0128-z.
  • 27. Vastila K., Kummu M., Sangmanee C., Chinvanno S. 2010. Modelling climate change impacts on the flood pulse in the Lower Mekong floodplains. J Water Clim Chang, 1, 67–86.
  • 28. Wang G.Q. et al. 2013. Simulating the Impact of Climate Change on Runoff in a Typical River Catchment of the Loess Plateau, China. J Hydrometeorol, 14(5), 1553–1561.
  • 29. Worldbank (WB). 2022. https://climateknowledgeportal.worldbank.org/country/lao-pdr/climate-data-projections-expert. Accessed 16 August 2022.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e30ff007-1f50-48b2-815c-458a2edbbecf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.