Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | Vol. 69, no. 6 | 2483--2495
Tytuł artykułu

Seasonal variation of quiet time TEC over West and Central African equatorial/low latitude ionosphere (2011–2014)

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates seasonal variation of quiet-time total electron content (TEC) over West and Central African equatorial/low-latitude ionosphere during years 2011–2014. We used TEC data obtained at five African equatorial/low-latitude GPS stations, namely; Yamoussoukro (geographic coordinates 6.87° N, 5.24° W; geomagnetic coordinates 2.84°S, 67.41°E) [Ivory Coast], Cotonou (6.37° N, 2.43° E; 3.09° S, 74.52° E) [Benin Republic], Accra (5.55° N, 0.02° W; 3.50°S, 73.13°E) [Ghana], Yaoundé (3.87°N, 11.52°E; 5.29°S, 83.13°E) [Cameroon] and Libreville (0.39°N, 9.45°E; 7.99° S, 80.84°E) [Gabon]. Diurnally, at all the stations, TEC consistently reached maximum at around 1400–1600 LT and minimum at 0600 LT. Surprisingly, contrary to the notion that on season-by-season analysis, TEC over the African equatorial/low-latitude region usually attains maximum during equinoxes, in 2011 and 2013, over West and Central African low-latitude region, TEC attained maximum values in December solstice. In 2012 and 2014, highest TEC values were recorded in equinoxes. Overall, June solstice consistently recorded the lowest values of TEC over West and Central African equatorial/low-latitude region. TEC showed solar activity dependence: highest in 2014 and lowest in 2011. TEC also showed clear evidence of higher electron density at Libreville (inner flank of the southern Equatorial Ionization Anomaly (EIA) crest) than at Yamoussoukro (EIA trough). These results would be helpful in developing new predictive models or validating the existing models for the West and Central African equatorial/low-latitude ionosphere.
Wydawca

Czasopismo
Rocznik
Strony
2483--2495
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
  • Department of Physics, University of Lagos, Akoka, Yaba, Lagos, Nigeria, akalaovie2004@yahoo.com
  • Distance Learning Institute, University of Lagos, Akoka, Yaba, Lagos, Nigeria
  • Department of Physics, University of Lagos, Akoka, Yaba, Lagos, Nigeria
  • Department of Physics, University of Lagos, Akoka, Yaba, Lagos, Nigeria
Bibliografia
  • 1. Akala AO, Adeloye AB, Somoye EO (2010) Ionospheric of F2 variability at equatorial and low latitudes during high moderate and low solar activity. Adv Space Res 45(11):1311–1314
  • 2. Akala AO, Seemala GK, Doherty PH, Valladares CE, Carrano CS, Espinoza J, Oluyo S (2013) Comparison of equatorial GPS-TEC observations over an African station and an American station during the minimum and ascending phases of solar cycle 24. Ann Geophys 31(11):2085–2096. https://doi.org/10.5194/angeo-31-2085-2013
  • 3. Akala AO, Awoyele A, Doherty PH (2016) Statistics of GNSS amplitude scintillation occurrences over Dakar, Senegal, at varying elevation angles during the maximum phase of solar cycle 24. Space Weather 14:233–246. https://doi.org/10.1002/2015SW001261
  • 4. Akala AO, Ejalonibu AH, Doherty PH, Radicella SM, Groves KM, Carrano CS, Bridgwood CT, Stoneback RA (2017) Characterization of GNSS amplitude scintillations over Addis Ababa during 2009–2013. Adv Space Res 59:1969–1983
  • 5. Akala AO, Oyeyemi EO, Amaechi PO, Radicella SM, Nava B, Amory-Mazaudier C (2020) Longitudinal responses of the equatorial/low-latitude ionosphere over the oceanic regions to geomagnetic storms of May and September 2017. J Geophys Res Space Phys 125:e2020JA027963: https://doi.org/10.1029/2020JA027963
  • 6. Alken P, Chulliat A, Maus S (2013) Longitudinal and seasonal structure of the ionospheric equatorial electric field. J Geophys Res Space Phys 118:1298–1305. https://doi.org/10.1029/2012JA018314
  • 7. Appleton EV (1946) Two anomalies in the ionosphere. Nature 157:691
  • 8. Bagiya MS, Josh HP, Iyer KN, Aggarwal M, Ravindran S, Pathan BM (2009) TEC variations during low solar activity periods (2005–2007) near the equatorial ionospheric anomaly crest region in India. Ann Geophys 27:1047–1057
  • 9. Balan N, Bailey GJ (1995) Equatorial plasma fountain and its effects: possibility of an additional Layer. J Geophys Res 100:21421–21432. https://doi.org/10.1029/95JA01555
  • 10. Bolaji OS, Adeniyi JO, Radicella SM, Doherty PH (2013) Variability of total electron content over an equatorial West African station during low solar activity. Radio Sci 47:RS1001. https://doi.org/10.1029/2011RS004812
  • 11. Burke WJ, Gentile LC, Huang CY, Valladares CE, Su SY (2004) Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1. J Geophys Res 109:A12301. https://doi.org/10.1029/2004JA010583
  • 12. Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella SM (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81:111–120
  • 13. Duncan RA (1960) The equatorial F-region of the ionosphere. J Atmos Terr Phys 18:89–100
  • 14. Eyelade VA, Adewale AO, Akala AO, Bolaji OS, Rabiu BA (2017) Studying the variability in the diurnal and seasonal variations in GPS TEC over Nigeria. Ann Geophys 35:701–2017
  • 15. Fayose RF, Rabiu B, Oladosu O, Groves K (2012) Variation of total electron content (TEC) and their effect on GNSS over Akure, Nigeria. Appl Phys Res 4(2):105–109
  • 16. Fejer BG (1991) Low latitude electrodynamics plasma drifts: a review. J Atmos Terr Phys 53:677–693. https://doi.org/10.1016/0021-9169(91)90121-M
  • 17. Fuller-Rowell TJ (1998) The “thermospheric spoon”: a mechanism for the semiannual density variation. J Geophys Res 103:3951–3956
  • 18. Gentile LC, Burke WJ, Roddy PA, Retterer JM, Tsunoda RT (2011) Climatology of plasma density depletions observed by DMSP in the dawn sector. J Geophys Res 116:A03321. https://doi.org/10.1029/2010JA016176
  • 19. Hanson WB, Moffett RJ (1966) Ionization transport effects in the equatorial F region. J Geophys Res 71(23):5559–5572
  • 20. Hei MA, Heelis RA, McClure JP (2005) Seasonal and longitudinal variation of large-scale topside equatorial plasma depletions. J Geophys Res 110:A12315. https://doi.org/10.1029/2005JA011153
  • 21. Hunsucker RD, Hargreaves JK (1995) The high latitude Ionosphere and its effect on radio propagation. Cambridge University Press, Cambridge
  • 22. Klobuchar J (1996) Ionospheric effects on GPS. Glob Position Syst Theory Appl 1:485–515
  • 23. Ma G, Maruyama T (2003) Derivation of TEC and estimation of instrumental biases from GEONET in Japan. Ann Geophys 21:2083–2093. https://doi.org/10.5194/angeo-21-2083-2003
  • 24. Mannucci AJ, Wilson BD, Edwards CD (1993) A new method for monitoring the earth’s ionosphere total electron content using the GPS global network. In: Proceedings of ION GPS- 93, institute of navigation. pp 1323–1332
  • 25. Mitra SK (1946) Geomagnetic control of region F2 of the ionosphere. Nature 158:668–669
  • 26. Mungufeni P, Samireddipalle S, Migoya-Orué Y, Kim YH (2020) Modeling total electron content derived from radio occultation measurements by COSMIC satellites over the African Region. Ann Geophys. https://doi.org/10.5194/angeo-2019-160
  • 27. Nigussie M et al (2016) Validation of NeQuick TEC data ingestion technique against C/NOFS and EISCAT electron density measurements. Radio Sci 51(7):905–917
  • 28. Obrou O, Mene NM, Kobea AT, Zaka KZ (2009) Equatorial total electron content (TEC) at low and high solar activity. Adv Space Res 43:1757–1761
  • 29. Okoh D et al (2016) A regional GNSS-VTEC model over Nigeria using neural networks: a novel approach. Geodesy Geodynam 7(1):19–31
  • 30. Okoh D et al (2019) A neural network-based ionospheric model over Africa from constellation observing system for meteorology, ionosphere, and climate and ground global positioning system observations. J Geophys Res Space Phys. https://doi.org/10.1029/2019JA027065
  • 31. Olwendo OJ et al (2012) Characterization of ionospheric GPS Total Electron Content (GPS-TEC) in low latitude zone over the Kenyan region during a very low solar activity phase. J Atmos Solar Terr Phys 84:52–61
  • 32. Oyedokun OJ, Akala AO, Oyeyemi EO (2020) Characterization of African Equatorial Ionization Anomaly (EIA) during the maximum phase of solar cycle 24. J Geophys Res Space Phys. https://doi.org/10.1029/2019ja027066
  • 33. Rishbeth H (2000) The equatorial F-layer: progress and puzzles. Ann Geophys 18:730–739
  • 34. Rishbeth H, Lyon AJ, Peart M (1963) Diffusion in the equitorial F layer. J Geophys 68:2559–2569. https://doi.org/10.1029/JZ068i009p02559
  • 35. Rishbeth H, Muller-Wodarg ICF, Zou L, Fuller-Rowell TJ, Millward GH, Moffett RJ, Idenden DW, Aylward AD (2000) Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion. Ann Geophys 18(8):927–944. https://doi.org/10.1007/s00585-000-0927-8
  • 36. Seemala GK, Valladares CE (2011) Statistics of total electron content depletions observed over the South American continent for the year 2008. Radio Sci 46:RS5019. https://doi.org/10.1029/2011RS004722
  • 37. Titheridge JE (1995) Winds in the ionosphere—a review. J Atmos Terr Phys 57:1681–1714
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e302d943-1025-46e5-93f1-bde67e6d6fb8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.