Czasopismo
2014
|
Vol. 14, no. 4
|
766--775
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Dynamic pull-in instability of vibrating nano-actuators in the presence of actuation voltage is studied in this paper through introducing the closed form expression for the fundamental frequency of beam-type nano-structure. The fringing field effect and dispersion forces (Casimir and van der Waals attractions) are taken into account in the dynamic governing equation of motion. The influences of initial amplitude of vibration, applied voltage and intermolecular forces on the dynamic pull-in behavior and fundamental frequency are investigated by a modern asymptotic approach namely Parameter Expansion Method (PEM). It is demonstrated that two terms in series expansions are sufficient to produce an acceptable solution of the actuated nano-structure. The obtained results from numerical methods by considering three mode assumptions verify the strength of the analytical procedure. The qualitative analysis of system dynamic shows that the equilibrium points of the autonomous system include stable center points and unstable saddle nodes. The phase portraits of the nano-beam actuator exhibit periodic and homoclinic orbits.
Czasopismo
Rocznik
Tom
Strony
766--775
Opis fizyczny
Bibliogr. 42 poz., rys., wykr.
Twórcy
autor
- Department of Mechanical Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz 61357-43337, Iran, h.msedighi@scu.ac.ir
autor
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
autor
- Department of Mechanical Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz 61357-43337, Iran
Bibliografia
- [1] M.A. Eltaher, F.F. Mahmoud, A.E. Assie, E.I. Meletis, Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams, Applied Mathematics and Computation 224 (2013) 760–774.
- [2] J. Abdi, A. Koochi, A.S. Kazemi, M. Abadyan, Modeling the effects of size dependence and dispersion forces on the pull- in instability of electrostatic cantilever NEMS using modified couple stress theory, Smart Materials and Structures 20 (2011) 055011.
- [3] R. Soroush, A. Koochi, A.S. Kazemi, A. Noghrehabadi, H. Haddadpour, M. Abadyan, Investigating the effect of Casimir and van der Waals attractions on the electrostatic pull-in instability of nano-actuators, Physica Scripta 82 (2010) 045801.
- [4] A. Noghrehabadi, M. Ghalambaz, A. Ghanbarzadeh, A new approach to the electrostatic pull-in instability of nanocantilever actuators using the ADM-Padé technique, Computers and Mathematics with Applications 64 (9) (2012) 2806–2815. , http://dx.doi.org/10.1016/j.camwa.2012.04.013.
- [5] M. Moghimi Zand, M.T. Ahmadian, Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 224 (2010) 2037–2047, http:// dx.doi.org/10.1243/09544062JMES1716.
- [6] A. Gusso, G.J. Delben, Dispersion force for materials relevant for micro- and nanodevices fabrication, Journal of Physics D: Applied Physics 41 (2008) 175405, http://dx.doi.org/10.1088/ 0022-3727/41/17/175405.
- [7] A.W. Rodriguez, F. Capasso, S.G. Johnson, The Casimir effect in microstructured geometries, Nature Photonics 5 (2011) 211–221. , http://dx.doi.org/10.1038/nphoton.2011.39.
- [8] M. Bordag, U. Mohideen, V.M. Mostepanenko, New developments in the Casimir effect, Physics Reports 353 (1–3) (2001) 1–205.
- [9] R.C. Batra, M. Porfiri, D. Spinello, Review of modeling electrostatically actuated microelectromechanical systems, Smart Materials and Structures 16 (2007) R23, http://dx.doi. org/10.1088/0964-1726/16/6/R01.
- [10] M. Janghorban, Static and free vibration analysis of carbon nano wires based on Timoshenko beam theory using differential quadrature method, Latin American Journal of Solids and Structures 8 (2011) 463–472.
- [11] J.G. Guo, Y.P. Zhao, Dynamic stability of electrostatic torsional actuators with van der Waals effect, International Journal of Solids and Structures 43 (2006) 675–685.
- [12] Y. Chan, N. Thamwattana, J.M. Hill, Axial buckling of multi-walled carbon nanotubes and nanopeapods, European Journal of Mechanics A: Solids 30 (6) (2011) 794–806.
- [13] A. Koochi, A. Noghrehabadi, M. Abadyan, Approximating the effect of van der Waals force on the instability of electrostatic nano-cantilevers, International Journal of Modern Physics B 25 (29) (2011) 3965–3976.
- [14] R. Soroush, A. Koochi, A.S. Kazemi, M. Abadyan, Modeling the effect of van der Waals attraction on the instability of electrostatic cantilever and doubly-supported nano-beams using modified adomian method, International Journal of Structural Stability and Dynamics 12 (05) (2012) 1250036.
- [15] M. Rasekh, S.E. Khadem, Pull-in analysis of an electrostatically actuated nano-cantilever beam with nonlinearity in curvature and inertia, International Journal of Mechanical Sciences 53 (2) (2011) 108–115.
- [16] Y. Fu, J. Zhang, Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies, Applied Mathematical Modelling 35 (2) (2011) 941–951.
- [17] A. Ramezani, A. Alasty, J. Akbari, Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces, International Journal of Solids and Structures 44 (14–15) (2007) 4925–4941.
- [18] G. Duan, K.T. Wan, ‘‘Pull-in’’ of a pre-stressed thin film by an electrostatic potential: a 1-D rectangular bridge and a 2-D circular diaphragm, International Journal of Mechanical Sciences 52 (9) (2010) 1158–1166.
- [19] J.G. Boyd, J. Lee, Deflection and pull-in instability of nanoscale beams in liquid electrolytes, Journal of Colloid and Interface Science 356 (2) (2011) 387–394.
- [20] J.G. Guo, Y.P. Zhao, The size-dependent bending elastic properties of nanobeams with surface effects, Nanotechnology 18 (2007) 295701, http://dx.doi.org/10.1088/ 0957-4484/18/29/295701.
- [21] W.H. Lin, Y.P. Zhao, Nonlinear behavior for nanoscale electrostatic actuators with Casimir force, Chaos, Solitons and Fractals 23 (2005) 1777–1785.
- [22] W.H. Lin, Y.P. Zhao, Dynamic behavior of nanoscale electrostatic actuators, Chinese Physics Letters 20 (11) (2003) 2070–2073.
- [23] R. Bansal, J.V. Clark, Lumped modeling of carbon nanotubes for M/NEMS simulation, Microsystem Technologies 18 (12) (2012) 1963–1970.
- [24] Y. Zhang, Y. Liu, K.D. Murphy, Nonlinear dynamic response of beam and its application in nanomechanical resonator, Acta Mechanica Sinica 28 (1) (2012) 190–200.
- [25] J.G. Guo, Y.P. Zhao, Influence of van der Waals and Casimir forces on electrostatic torsional actuators, Journal of Microelectromechanical Systems 13 (6) (2004) 1027–1035.
- [26] W.H. Lin, Y.P. Zhao, Casimir effect on the pull-in parameters of nanometer switches, Microsystem Technologies 11 (2005) 80–85.
- [27] A.H. Nayfeh, Perturbation Methods, Wiley-Interscience, New York, 1973.
- [28] H.M. Sedighi, K.H. Shirazi, J. Zare, An analytic solution of transversal oscillation of quintic nonlinear beam with homotopy analysis method, International Journal of Non- Linear Mechanics 47 (2012) 777–784.
- [29] H.M. Sedighi, K.H. Shirazi, A new approach to analytical solution of cantilever beam vibration with nonlinear boundary condition, Journal of Computational and Nonlinear Dynamics 7 (3) (2012) 034502, http://dx.doi.org/ 10.1115/1.4005924.
- [30] H.M. Sedighi, K.H. Shirazi, J. Zare, Novel equivalent function for deadzone nonlinearity: applied to analytical solution of beam vibration using He's parameter expanding method, Latin American Journal of Solids and Structures 9 (2012) 443–451.
- [31] H.M. Sedighi, K.H. Shirazi, A.R. Noghrehabadi, A. Yildirim, Asymptotic investigation of buckled beam nonlinear vibration, Iranian Journal of Science and Technology, Transaction of Mechanical Engineering 36 (2012) 107–116.
- [32] H.M. Sedighi, K.H. Shirazi, A. Reza, J. Zare, Accurate modeling of preload discontinuity in the analytical approach of the nonlinear free vibration of beams, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 226 (10) (2012) 2474–2484, http://dx.doi.org/10.1177/0954406211435196.
- [33] M. Jalaal, D.D. Ganji, G. Ahmadi, Analytical investigation on acceleration motion of a vertically falling spherical particle in incompressible Newtonian media, Advanced Powder Technology 21 (3) (2010) 298–304.
- [34] M. Jalaal, D.D. Ganji, On unsteady rolling motion of spheres in inclined tubes filled with incompressible Newtonian fluids, Advanced Powder Technology 22 (1) (2011) 58–67.
- [35] M. Jalaal, D.D. Ganji, An analytical study on motion of a sphere rolling down an inclined plane submerged in a Newtonian fluid, Powder Technology 198 (1) (2010) 82–92.
- [36] H.M. Sedighi, K.H. Shirazi, M.A. Attarzadeh, A study on the quintic nonlinear beam vibrations using asymptotic approximate approaches, Acta Astronautica 91 (2013) 245– 250.
- [37] D.D. Ganji, A semi-analytical technique for non-linear settling particle equation of motion, Journal of Hydro- Environment Research 6 (4) (2012) 323–327.
- [38] J.H. He, Max–Min approach to nonlinear oscillators, International Journal of Nonlinear Sciences and Numerical Simulation 9 (2008) 207–210.
- [39] H.M. Sedighi, K.H. Shirazi, Asymptotic approach for nonlinear vibrating beams with saturation type boundary condition, Proceedings of the Institution of Mechanical Engineers. Part C: Journal of Mechanical Engineering Science 227 (11) (2013) 2479–2486.
- [40] J.H. He, Some asymptotic methods for strongly nonlinear equations, International Journal of Modern Physics B 20 (2006) 1141–1199.
- [41] J.H. He, Bookkeeping parameter in perturbation methods, International Journal of Nonlinear Sciences and Numerical Simulation 2 (2001) 257–264.
- [42] M. Rahaeifard, M.T. Ahmadian, K. Firoozbakhsh, Size- dependent dynamic behaviour of microcantilevers under suddenly applied DC voltage, ProcIMechE Part C: J Mechanical Engineering Science (2013), http://dx.doi.org/10.1177/ 0954406213490376.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e2e04b84-c4ea-445e-a90a-606d71d6d272