Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 19, no. 2-3 | 97--105
Tytuł artykułu

A Competitive Study of Graph Reduction Methods for Min S-T Cut Image Segmentation

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
When applied to the segmentation of 3D medical images, graph-cut segmentation algorithms require an extreme amount of memory and time resources in order to represent the image graph and to perform the necessary processing on the graph. These requirements actually exclude the graph-cut based approaches from their practical application. Hence, there is a need to develop the dedicated graph size reduction methods. In this paper, several techniques for the graph size reduction are proposed. These apply the idea of superpixels. In particular, two methods for superpixel creation are introduced. The results of applying the proposed methods to the segmentation of CT datasets using min-cut/max-flow algorithm are presented, compared and discussed.
Wydawca

Rocznik
Strony
97--105
Opis fizyczny
Bibliogr. 8 poz., rys.
Twórcy
  • Lodz University of Technology, Institute of Applied Computer Science, 18/22 Stefanowskiego Str., 90-924 Lodz, Poland, tweglinski@kis.p.lodz.pl
  • Lodz University of Technology, Institute of Applied Computer Science, 18/22 Stefanowskiego Str., 90-924 Lodz, Poland
  • Lodz University of Technology, Institute of Applied Computer Science, 18/22 Stefanowskiego Str., 90-924 Lodz, Poland
Bibliografia
  • [1] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S. (2012). SLIC Superpixels Compared to State-of-the-art Superpixel Methods, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11), 2274-2282
  • [2] Boykov, Y., Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124-1137
  • [3] Felzenszwalb, P. F., Huttenlocher, D. P. (2004). Efficient Graph-Based Image Segmentation, International Journal of Computer Vision, 59(2), 167-181
  • [4] Fishbain, B., Hochbaum, D.S., Yang, Y.T. (2012). Graph-cuts target tracking in videos through joint utilization of color and coarse motion data. UC Berkeley Manuscript
  • [5] Goldberg, A.V. (2008). The partial augmentrelabel algorithm for the maximum flow problem. Algorithms-ESA 2008, 466-477
  • [6] Grundmann, M., Kwatra, V., Mei Han, and Essa, I. (2010). Efficient hierarchical graph-based video segmentation. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR), 2141-2148
  • [7] Harris, J., Hirst, J.L., Mossinghoff, M. (2008). Combinatorics and Graph Theory (2nd ed.). Springer, New York, ISBN: 0-387-79710-6
  • [8] Mu, Y., Zhang, H., Wang, H., Zuo, W. (2007). Automatic video object seg-mentation using graph cut. In: IEEE international conference on image processing (ICIP 2007), 3, III-377-III-380
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e2c54c71-c986-4d49-8b12-763b66ceda5a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.