Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 9 (44) | 238--256
Tytuł artykułu

Real-time Neural Sliding Mode Linearization Control for a Doubly Fed Induction Generator under Disturbances

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an experimental implementation of a Neural Sliding Mode Linearization approach for the control of a double-fed induction generator connected to an infinite bus via transmission lines. The rotor windings are connected to the grid via a back-to-back converter, while the stator windings are directly coupled to the network. The chosen control scheme is applied to obtain the required stator power trajectories by controlling the rotor currents and to track the desired values of the DC-link output voltage and the grid power factor. This controller is based on a neural identifier trained online using an Extended Kalman Filter. Based on such identifier, an adequate model is obtained, which is used for synthesizing the required controllers. The proposed control scheme is experimentally verified on 1/4 HP DFIG prototype considering normal and abnormal grid conditions. In addition, maximum power extraction from a random wind profile is tested in the presence of different grid scenarios. Moreover, a comparison with conventional control schemes is performed. The obtained results illustrate the capability of the proposed control scheme to achieve active power, reactive power, and DC voltage desired trajectories tracking and to operate the wind power system even in the presence of parameter variation and grid disturbances, which helps to ensure the stability of the system and improve generated power quality.
Wydawca

Rocznik
Strony
238--256
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Université de Lorraine, LCOMS, 57000 Metz, France
  • Department of Electrical Engineering, Cinvestav Guadalajara, Zapopan, Mexico
  • TecNM Chihuahua, Av. Tecnologico 2909, Tecnológico, Chihuahua, México
  • TecNM Chihuahua, Av. Tecnologico 2909, Tecnológico, Chihuahua, México
Bibliografia
  • [1] A. A. Tanvir, A. Merabet, R. Beguenane, Real-time control of active and reactive power for doubly fed induction generator based wind energy conversion system, Energies 8 (2015) 10389–10408. doi:10.3390/en80910389.
  • [2] Z. Elhassan, T. Y. Li, Simplified voltage control of paralleling doubly fed induction generators connected to the network using svc, International Transactions on Electrical Energy Systems 25 (11) (2015) 2847–2864. doi:10.1002/etep.1995.
  • [3] B. Beltran, M. E. Benbouzid, T. Ahmed-Ali, Secondorder sliding mode control of a doubly fed induction generator driven wind turbine, IEEE Transactions on Energy Conversion 27 (2) (2012) 261–269. doi:10.1109/TEC.2011.2181515.
  • [4] V. Utkin, J. Guldner, J. Shi, Sliding mode control in Electro-Mechanical system, CRC press Taylor and Francis Group, Boca Raton, FL, 2009.
  • [5] R. Pena, J. Clare, G. Asher, A doubly fed induction generator using backto-back pwm converters and its application to variable-speed wind-energy generation, IEE Proceedings-Electric Power Applications 143 (3) (1996) 231–241. doi:10.1049/ip-epa:19960288.
  • [6] J. Morren, S. de Haan, Ride through of wind turbines with doubly-fed induction generator during a voltage dip, IEEE Transactions on Energy Conversion 20 (2) (2005) 435–441. doi:10.1109/TEC.2005.845526.
  • [7] V. P. Pinto, J. T. Campos, L. N. D. Reis, C. B. Jacobina, N. Rocha, Robustness and performance analysis for the linear quadratic gaussian/ loop transfer recovery with integral action controller applied to doubly fed induction generators in wind energy conversion systems, Electric Power Components and Systems journal 40 (2) (2011) 131–146. doi:10.1080/15325008.2011.629331.
  • [8] O. Barambones, J. A. Cortajarena, J. M. G. d. D. P. Alkorta, Real-time sliding mode control for a wind energy system based on a doubly fed induction generator, Energies 7 (2014) 6412–6433. doi:10.3390/en7106412.
  • [9] E. Sanchez, R. Riemann, Doubly Fed Induction Generators: Control for Wind Energy, CRC press Taylor and Francis Group, Boca Raton, FL, 2016.
  • [10] R. K. Patnaik, P. K. Dash, K. Mahapatra, Adaptive terminal sliding mode power control of dfig based wind energy conversion system for stability enhancement, International Transactions on Electrical Energy Systems 26 (4) (2016) 750–782. doi:10.1002/etep.2105.
  • [11] M. Ezzat, M. Benbouzid, S. Muyeen, L. Harnefors, Low-voltage ridethrough techniques for dfigbased wind turbines: state-of-the-art review and future trends, in: 39 th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 2013, pp. 7681–7686. doi: 10.1109/IECON.2013.6700413.
  • [12] I. Sadeghkhani, M. E. Golshan, A. Mehrizi-Sani, J. M. Guerrero, Lowvoltage ride-through of a droop-based three-phase four-wire grid-connected microgird, IET Generation, Transmission & Distribution 12 (8) (2018) 1906–1914. doi:10.1049/iet-gtd.2017.1306.
  • [13] N. Y. Abed, M. M. Kabsha, G. M. Abdlsalam, Low voltage ride-through protection techniques for dfig wind generator, in: 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 2013. doi:10.1109/PESGM.2012.6345594.
  • [14] L. Yang, Z. Xu, J. Ostergaard, Z. Dong, K. Wong, Advanced control strategy of dfig wind turbines for power system fault ride through, IEEE Transactions on Power Systems 27 (2012) 713–722. doi:10.1109/TPWRS.2011.2174387.
  • [15] J. J.Justo, R.C.Bansal, Parallel r-l configuration crowbar with series r-l circuit protection for lvrt strategy of dfig under transient-state, Electric Power System Research 154 (2018) 299–310. doi:10.1016/j.epsr.2017.09.002.
  • [16] J. J.Justo, F.Mwasilu, J. W. Jung, Enhanced crowbarless frt strategy for dfig based wind turbines under three-phase voltage dip, Electric Power System Research 142 (2017) 215–226. doi:10.1016/j.epsr.2016.09.029.2
  • [17] Y. Zhou, P. Bauer, J. Ferreira, J. Pierik, Operation of grid-connected dfig under unbalanced grid voltage condition, IEEE Transactions on Energy Conversion 24 (1) (2009) 240–246. doi:10.1109/TEC.2008.2011833.
  • [18] J. Hu, Y. He, L. Xu, B. Williams, Improved control of dfig systems during network unbalance using pi-r current regulators, IEEE Transactions on Industrial Electronics 56 (2) (2009) 439–451. doi:10.1109/TIE.2008.2006952.
  • [19] M. J. Morshed, A. Fekih, A new fault ride-through control for dfig-based wind energy systems, Electric Power System Research 146 (2017) 258269. doi:10.1016/j.epsr.2017.02.010.
  • [20] L. Djilali, E. N. Sanches, M. Belkheiri, Real time implementation of sliding mode field oriented control for a dfig based wind turbine, International Transactions on Electrical Energy Systems 28 (5) (2018) 1–26. doi:10.1002/etep.2539.
  • [21] M. Martinez, G. Tapia, A. Susperregui, H. Camblong, Sliding-mode control 505 of a wind turbine-driven double-fed induction generator under non-ideal grid voltages, IET Renewable Power Generation 7 (4) (2013) 370–379. doi:10.1049/iet-rpg.2012.0172.
  • [22] D. Sun, X. Wang, H. Nian, Z. Q. Zhu, A slidingmode direct power control strategy for dfig under both balanced and unbalanced grid conditions using extended active power, IEEE Transactions on Power Electronics 33 (2018) 1313–1322. doi:10.1109/TPEL.2017.2686980.
  • [23] R. Ruiz-Cruz, E. N. Sanchez, A. Loukianov, J. A. Ruz-Hernandez, Realtime neural inverse optimal control for a wind generator, IEEE Transactions on Sustainable Energy (Early Access) 10 (3) (2019) 1172–1183. doi:10.1109/TSTE.2018.2862628.
  • [24] L. Djilali, E. N. Sanches, M. Belkheiri, Real-time neural sliding mode field oriented control for a dfig-based wind turbine under balanced and unbalanced grid conditions, IET Renewable Power Generation 13 (4) (2019) 618–632. doi:10.1049/iet-rpg.2018.5002.
  • [25] E. N. Sanchez, A. Y. Alanis, A. G. Loukianov, Discrete-Time High Order Neural Control trained with Kalman filtering, Springer Science & Business Media, Verlag London, Uk, 2008.
  • [26] G. Rovithakis, M. Chistodoulou, Adaptive Control with Recurrent High Order Neural Networks, Springer Science & Business Media, Verlag London, UK, 2012.
  • [27] W. Lin, C. I. Byrnes, Design of discrete-time nonlinear control systems via smooth feedback, IEEE Transactions on Automatic Control 39 (11) (1994) 2340–2346. doi:10.1109/9.333790.
  • [28] L. Saihi, B. Berbaoui, H. Glaoui, L. Djilali, S. Abdeldjalil, Robust sliding 530 mode h∞ controller of dfig based on variable speed wind energy conversion system, Periodica Polytechnica Electrical Engineering and Computer Science 64 (2020) 53–63. doi:doi.org/10.3311/PPee.14490.
  • [29] J. Hu, Y. He, L. Xu, B. Williams, Four-quadrant dynamometer/power supply, Festo LabVolt Datasheet.
  • [30] G. Bartolini, A. Ferrara, V. I. Utkin, Adaptive sliding mode control discrete-time system, Automatica 31 (5) (1995) 769–773.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e25aadd2-614f-46a5-927c-e3475d9228bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.