Warianty tytułu
Języki publikacji
Abstrakty
The discharge of wastewater containing both high salinity and high organic content without prior treatment is detrimental to aquatic life and water hygiene. In order to integrate the advantages of membrane treatment and biological treatment, and exert the phosphorus removal efficiency of dewatered alum sludge, in this study, an aerobic membrane reactor based on dehydrated alum sludge was used to treat mustard tuber wastewater with salinity of 6.8-7.3 % under the conditions of 30 °C, 20 kPa trans-membrane pressure (TMP) and chemical oxygen demand (COD) of 3300-3900 mg/L. Three replicate reactors were applied to assess the operational performance under different organic loading rate (OLR). The results showed that all reactors were effective in removing COD, ammonia nitrogen (NH4+-N) and soluble phosphate (SP) under the conditions of 30 °C and 20 kPa of TMP. Meanwhile, the effluent concentration of COD, NH4+-N and SP all increased while OLR was changed from 1.0 to 3.0 kg COD/m3/day, and the effluent COD and NH4+-N concentration except for SP could reach the B-level of Chinese “Wastewater quality standards for discharge to municipal sewers” when OLR was less than 3.0 kg COD/m3/day. This indicates that dewatered alum sludge-based aerobic membrane reactor is a promising bio-measure for treating high salinity wastewater.
Czasopismo
Rocznik
Tom
Strony
77--86
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, 453007, China, loulantingxue@126.com
autor
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, 453007, China
autor
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, 453007, China
autor
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, 453007, China
autor
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, 453007, China
Bibliografia
- [1] Pendashteh AR, Fakhru’l-Razi A, Madaeni SS, Abdullah LC, Abidin ZZ, Biak DRA. Membrane foulants characterization in a membrane bioreactor (MBR) treating hypersaline oily wastewater. Chem Eng J. 2011;168:140-50. DOI: 10.1016/j.cej.2010.12.053.
- [2] Zhang XH, Gao J, Zhao FB, Zhao YY, Li ZS. Characterization of a salt-tolerant bacterium Bacillus sp from a membrane bioreactor for saline wastewater treatment. J Environ Sci. 2014;26:1369-74. DOI: 10.1016/S1001-0742(13)60613-0.
- [3] Osaka T, Shirotani K, Yoshie S, Tsuneda S. Effects of carbon source on denitrification efficiency and microbial community structure in a saline wastewater treatment process. Water Res. 2008;42:3709-18. DOI: 10.1016/j.watres.2008.06.007.
- [4] Aslan S, Simsek E. Influence of salinity on partial nitrification in a submerged biofilter. Bioresour Technol. 2012;118:24-9. DOI: 10.1016/j.biortech.2012.05.057.
- [5] Chen YP, Ma TF, Hu X, Fang F, Shen Y, Yang JX, et al. Start-up of a combined anaerobic/partial nitritation/anammox process for high-salt mustard wastewater treatment. Appl Biochem Biotechnol. 2015;175:119-34. DOI: 10.1007/s12010-014-1247-x.
- [6] Song XY, McDonald J, Price WE, Khan SJ, Hai FI, Ngo HH, et al. Effects of salinity build-up on the performance of an anaerobic membrane bioreactor regarding basic water quality parameters and removal of trace organic contaminants. Bioresour Technol. 2016;216:399-405. DOI: 10.1016/j.biortech.2016.05.075.
- [7] Qu WD, Li JY, Han GX, Wu HT, Song WM, Zhang XS. Effect of salinity on the decomposition of soil organic carbon in a tidal wetland. J Soil Sediment. 2019;19:609-17. DOI: 10.1007/s11368-018-2096-y.
- [8] Rovirosa N, Sanchez E, Cruz M, Veiga MC, Borja R. Coliform concentration reduction and related performance evaluation of a down-flow anaerobic fixed bed reactor treating low-strength saline wastewater. Bioresour Technol. 2004;94:119-27. DOI: 10.1016/j.biortech.2003.12.010.
- [9] Gao YX, Liu SX, Cai Q, Li HD, Yang P. Effects of chloride ion on performance and microbial community in an anaerobic fluidized bed microbial fuel cell. Environ Eng Sci. 2019;36:1214-23. DOI: 10.1089/ees.2019.0102.
- [10] Chai HX, Wei ZW, Kang W, Wei YH, Du J, Zhou J, et al. Biological treatment of mustard tuber wastewater and urban sewage by cyclic activated sludge system. Asian J Chem. 2014;26:3261-4. DOI: 10.14233/ajchem.2014.17505.
- [11] Tatoulis TI, Zapantiotis S, Frontistis Z, Akratos CS, Tekerlekopoulou AG, Pavlou S, et al. A hybrid system comprising an aerobic biological process and electrochemical oxidation for the treatment of black table olive processing wastewaters. Int Biodeterioration Biodegr. 2016;109:104-12. DOI: 10.1016/j.ibiod.2016.01.013.
- [12] Deorsola AB, Camarinha GC, Carvalho DD, Sant'Anna GL. Biological treatment of saline wastewaters in an aerobic sequencing batch reactor. Environ Prog Sustain. 2013;32:198-205. DOI: 10.1002/ep.10634.
- [13] Gomec CY, Gonuldinc S, Eldem N, Ozturk I. Behavior of an up-flow anaerobic sludge bed (UASB) reactor at extreme salinity. Water Sci Technol. 2005;51:115-20. DOI: 10.2166/wst.2005.0397.
- [14] Aslan S, Sekerdag N. Salt inhibition on anaerobic treatment of high salinity wastewater by upflow anaerobic sludge blanket (UASB) reactor. Desalin Water Treat. 2016;57:12998-3004. DOI: 10.1080/19443994.2015.1059369.
- [15] Lu J, Yan X, Ma YF, Tian CX, Ding JC. Impact of salinity on treatment of saline wastewater by sequencing batch biofilm reactor process. J Cent South Univ. 2014;21:1989-94. DOI: 10.1007/s11771-014-2147-5.
- [16] Yang JX, Spanjers H, Jeison D, Van Lier JB. Impact of Na+ on biological wastewater treatment and the potential of anaerobic membrane bioreactors: A review. Crit Rev Environ Sci Technol. 2013;43(24):2722-46. DOI: 10.1080/10643389.2012.694335.
- [17] Dan NP, Visvanathan C, Polprasert C, Ben Aim R. High salinity wastewater treatment using yeast and bacterial membrane bioreactors. Water Sci Technol. 2002;46:201-9. DOI: 10.2166/wst.2002.0239.
- [18] Li J, Yu DS, Wang D. Experimental test for high saline wastewater treatment in a submerged membrane bioreactor. Desalin Water Treat. 2011;36:171-7. DOI: 10.5004/dwt.2011.2253.
- [19] Huang LY, Lee DJ, Lai JY. Forward osmosis membrane bioreactor for wastewater treatment with phosphorus recovery. Bioresour Technol. 2015;198:418-23. DOI: 10.1016/j.biortech.2015.09.045.
- [20] Patsios SI, Kontogiannopoulos KN, Pouliou N, Karabelas AJ. Performance of a membrane bioreactor and a moving bed biofilm reactor-membrane bioreactor treating table olive processing wastewater: a comparative study. J Chem Technol Biotechnol. 2021;96(4):1030-9. DOI: 10.1002/jctb.6614.
- [21] Wang LM, Wang X, Yang F, Kong M, Peng FQ, Chao JY, et al. Nitrogen removal performance and ammonia- and nitrite-oxidizing bacterial community analysis of a novel industrial waste-based biofilter. Chem Eng J. 2016;299:156-66. DOI: 10.1016/j.cej.2016.04.082.
- [22] Liu RB, Mao Y, Shen C, Zhao YQ. Can biofilm affect alum sludge adsorption: An engineering scope in a novel biofilm reactor for wastewater treatment. Chem Eng J. 2017;328:683-90. DOI: 10.1016/j.cej.2017.07.081.
- [23] Zhao YQ, Babatunde AO, Zhao XH, Li WC. Development of alum sludge-based constructed wetland: An innovative and cost effective system for wastewater treatment. J Environ Sci Health A. 2009;44(8):827-32. DOI: 10.1080/10934520902928685.
- [24] Yang Y, Zhao YQ, Wang SP, Guo XC, Ren YX, Wang L, et al. A promising approach of reject water treatment using a tidal flow constructed wetland system employing alum sludge as main substrate. Water Sci Technol. 2011;63(10):2367-73. DOI: 10.2166/wst.2011.575.
- [25] Zhao XH, Zhao YQ, Wang WK, Yang YZ, Babatunde A, Hu YS, et al. Key issues to consider when using alum sludge as substrate in constructed wetland. Water Sci Technol. 2015;71(12):1775-82. DOI: 10.2166/wst.2015.138.
- [26] Lin HJ, Peng W, Zhang MJ, Chen JR, Hong HC, Zhang Y. A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives. Desalination. 2013;314:169-88. DOI: 10.1016/j.desal.2013.01.019.
- [27] Skouteris G, Hermosilla D, Lopez P, Negro C, Blanco A. Anaerobic membrane bioreactors for wastewater treatment: A review. Chem Eng J. 2012;198:138-48. DOI: 10.1016/j.cej.2012.05.070.
- [28] Liu JW, Kang XY, Luan XR, Gao LT, Tian HY, Liu XL. Performance and membrane fouling behaviors analysis with SVR-LibSVM model in a submerged anaerobic membrane bioreactor treating low-strength domestic sewage. Environ Technol Innov. 2020;19:100844. DOI: 10.1016/j.eti.2020.100844.
- [29] Wang HQ, Zhang HN, Zhang KF, Qian YX, Yuan X, Ji BX, et al. Membrane fouling mitigation in different biofilm membrane bioreactors with pre-anoxic tanks for treating mariculture wastewater. Sci Total Environ. 2020;724:138311. DOI: 10.1016/j.scitotenv.2020.138311.
- [30] APHA. Standard Methods for Water and Wastewater Examination, 22nd ed. Washington. Amer Public Health Assn, 2012. ISBN: 9780875530130.
- [31] Val del Rio A, Figueroa M, Mosquera-Corral A, Campos JL, Mendez R. Stability of aerobic granular biomass treating the effluent from a seafood industry. Int J Environ Res. 2013;7:265-76. DOI: 10.1016/j.envsoft.2012.08.007.
- [32] Corsino SF, Capodici M, Morici C, Torregrossa M, Viviani G. Simultaneous nitritation-denitritation for the treatment of high-strength nitrogen in hypersaline wastewater by aerobic granular sludge. Water Res. 2016;88:329-36. DOI: 10.1016/j.watres.2015.10.041.
- [33] Aloui F, Khoufi S, Loukil S, Sayadi S. Performances of an activated sludge process for the treatment of fish processing saline wastewater. Desalination. 2009;246:389-96. DOI: 10.1016/j.desal.2008.03.062.
- [34] Di Bella G, Torregrossa M. Simultaneous nitrogen and organic carbon removal in aerobic granular sludge reactors operated with high dissolved oxygen concentration. Bioresour Technol. 2013;142:706-13. DOI: 10.1016/j.biortech.2013.05.060.
- [35] Chai HX, Li L, Wei YH, Zhou J, Kang W, Shao ZY, et al. Optimization of membrane fouling process for mustard tuber wastewater treatment in an anoxic-oxic biofilm-membrane bioreactor. Environ Eng Res. 2016;21:196-202. DOI: 10.4491/eer.2015.093.
- [36] Jorfi S, Ghafari S, Ramavandi B, Soltani RDC, Ahmadi M. Biodegradation of high saline petrochemical wastewater by novel isolated halotolerant bacterial strains using integrated powder activated carbon/activated sludge bioreactor. Environ Prog Sustain. 2019;38:13088. DOI: 10.1002/ep.13088.
- [37] Oyanedel V, Campos JL, Garrido JM, Lazarova V, Mendez R. Development of a membrane-assisted hybrid bioreactor for ammonia and COD removal in wastewaters. J Chem Technol Biotechnol. 2005;80:206-15. DOI: 10.1002/jctb.1180.
- [38] Ramos AF, Gómez MA, Hontoria E, González-López J. Biological nitrogen and phenol removal from saline industrial wastewater by submerged fixed-film reactor. J Hazard Mater. 2007;142:175-83. DOI: 10.1016/j.jhazmat.2006.08.079.
- [39] Saikaly P, Ayoub GM. Ammonia nitrogen removal in step-feed rotating biological contactors. Water Air Soil Pollut. 2003;150:177-91. DOI: 10.1023/A:1026164530805.
- [40] Jiang JG, Zhang YJ, Li KM, Wang Q, Gong CX, Li ML. Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate. Bioresour Technol. 2013;143:525-30. DOI: 10.1016/j.biortech.2013.06.025.
- [41] Devai I, Felfoldy L, Wittner I, Plosz S. Detection of phosphine: New aspects of the phosphorus cycle in the hydrosphere. Nature. 1988;333:343-5. DOI: 10.1038/333343a0.
- [42] Kang W, Chai HX, Yang SW, Du GJ, Zhou J, He Q. Influence of organic loading rate on integrated bioreactor treating hypersaline mustard wastewater. Biotechnol Appl Biochem. 2016;63:590-4. DOI: 10.1002/bab.1396.
- [43] Huang SH, Chiswell B. Phosphate removal from wastewater using spent alum sludge. Water Sci Technol. 2000;42(3-4):295-300. DOI: 10.2166/wst.2000.0394.
- [44] Yang Y, Zhao YQ, Babatunde AQ, Wang L, Ren YX, Han Y. Characteristics and mechanisms of phosphate adsorption on dewatered alum sludge. Sep Purif Technol. 2006;51(2):193-200. DOI: 10.1016/j.seppur.2006.01.013.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e2452556-18bb-4c01-be74-aaaf3b2d9434