Warianty tytułu
Języki publikacji
Abstrakty
This article deals with the exhaust emissions from aircraft turbine engines, which is related to the rapidly growing market for this type of aircraft and its contribution to toxic emissions. The test carried out was done on a business jet turbine engine exhaust pollutants. The test object was the DGEN 380 engine. In order to determine the toxic composition of the exhaust gas as a function of the engine's operating range, an experiment related to the actual engine was conducted in the first stage. The test performed on the static thrust stand of the DGEN 380 turbine engine provided the necessary data on the parameters of the working medium for further research. The actual rotational characteristics of the engine were obtained. It was also determined numerically using GasTurb software. A high correspondence between experimental and calculated parameters was obtained, which gave the possibility of using them in further analyses of the exhaust gas pollutants of the studied engine. The correspondence of the results showed the correctness of the computational model built, thus predestining it for use in further analysis. This paper presents a model of the reverse-flow combustor made for numerical thermal-fluid studies. The thermal-fluid analysis of the model was performed in the ANSYS Fluent environment. The calculations were performed for three shaft speed. The numerical analysis provided information on changes in pollutant components of the exhaust gas of the DGEN 380 aircraft turbine engine as a function of changes in the shaft speed range. The results showed that the levels of nitrogen oxides depend greatly on shaft speed. The model built and the numerical analyses conducted also provided information about the zones inside of liner casing that affect significantly the amount of pollutant compounds obtained, which can then be used in the work on improving the design in terms of reducing the engine exhaust pollutants.
Rocznik
Tom
Strony
21--35
Opis fizyczny
Bibliogr. 27 poz., fig., tab.
Twórcy
autor
- Institute of Aircraft Engineering, Faculty of Mechatronics, Armament and Aviation, Military University of Technology, ul. S. Kaliskiego 2, 00-908 Warszawa, Poland, adam.kozakiewicz@wat.edu.pl
autor
- Institute of Aircraft Engineering, Faculty of Mechatronics, Armament and Aviation, Military University of Technology, ul. S. Kaliskiego 2, 00-908 Warszawa, Poland, aleksandra.kolodziejska@wat.edu.pl
autor
- Institute of Aircraft Engineering, Faculty of Mechatronics, Armament and Aviation, Military University of Technology, ul. S. Kaliskiego 2, 00-908 Warszawa, Poland, rafal.kieszek@wat.edu.pl
Bibliografia
- 1. https://www.europarl.europa.eu/news/pl/headlines/ society/20191129STO67756/emisje-z-samolotow- i-statkow-fakty-i-liczby-infografika; - no publica- tion data (Accessed on 01.04.2023)
- 2. Merkisz J. Ekologia w lotnictwie, Instytut Silników Spalinowych i Transportu, Politechnika Poznańska, Poznań 2016. https://docplayer.pl/50676369-Ekologia-w-lotnictwie.html - (Accessed on 01.04.2023)
- 3. Jakubowski R. Spalanie-Emisja toksycznych zanieczyszczeń oraz metody jej ograniczania w nowo- czesnych komorach spalania silników lotniczych; https://docplayer.pl/31360741-Spalanie-emisja- toksycznych-zanieczyszczen-oraz-metody-jej- ograniczania-w-nowoczesnych-komorach- spalania-silnikow-lotniczych.html - (Accessed on 01.04.2023)
- 4. European Aviation Environmental Report 2022, EASA 2022; https://www.easa.europa.eu/eco/sites/default/files/2023-02/230217_EASA%20 EAER%202022.pdf - (Accessed on 01.04.2023)
- 5. DSF-000008-A01-Initial-WAT WESTT-BR TRAINING; Price Induction’s proprietary materials, 2017
- 6. Kozakiewicz A. Estymacja punktu pracy sprężarki i jego parametry w oparciu o charakterystyki sprężarek, WAT, Warszawa, 2016. DOI: 10.5604/05096669.1226207
- 7. Głowacki P., Szczeciński S. Turbinowy silnik odrzutowy jako źródło zagrożeń ekologicznych, Prace Instytutu Lotnictwa, Warszawa 2011; 4: 252–257.
- 8. Balicki W., Chachurski R., Głowacki P., Kawalec K, Kozakiewicz A., Pągowski Z., Szczeciński J., Szczeciński S. Lotnicze silniki turbinowe. Konstrukcja-Eksploatacja-Diagnostyka, Biblioteka Naukowa Instytutu Lotnictwa, Warszawa 2010; 428.
- 9. Balicki W., Chachurski R., Głowacki P., Kozakiewicz A., Szczeciński S., Ekologia na lotniskach. Przegląd Sił Zbrojnych, 2014; 3: 85–89.
- 10. Merkisz J., Markowski J., Pielecha J., Emission tests of the F100-PW-229 turbine jet engine during pre-flight verification of the F-16 aircraft, WIT Transactions on Ecology and The Environment. 2013; 174: 219–230. WIT Press, www.witpress. com, (on-line), https://www.witpress.com/Secure/ elibrary/papers/AIR13/AIR13019FU1.pdf / Accessed on 2022-04-12/
- 11. Fulara S., Chmielewski M., Gieras M., Variable Geometry in Miniature Gas Turbine for Improved Performance and Reduced Environmental Impact, Energies. 2020; 13(5230): 1–19. DOI: 10.3390/ en13195230
- 12. Kotlarz W. Turbinowe zespoły napędowe źródłem skażeń powietrza na lotniskach wojskowych, Wyższa Szkoła Oficerska Sił Powietrznych, Dęblin 2003; 177.
- 13. Kuźniar M., Orkisz M. Analysis of the Application of Distributed Propulsion to the AOS H2 Motor Glider. Journal of KONES Powertrain and Transport. 2019; 26(2): 85–92. DOI: 10.2478/kones-2019-0036
- 14. Kozakiewicz A., Grzegorczyk T. Electric aircraft propulsion, Journal of KONBiN. 2021; 51(4): 49– 66. DOI: 10.2478/jok-2021-0044
- 15. Falkowski K., Kurnyta-Mazurek P., Szolc T., Henzel M. Radial Magnetic Bearings for Rotor–Shaft Support in Electric Jet Engine. Energies. 2022; 15: 3339. https://doi.org/10.3390/en15093339
- 16. Wheeler P., Sirimanna T.S., Bozhko S., Haran K.S. Electric/Hybrid-Electric Aircraft Propulsion Systems, proceedings of the IEEE. 2021; 109(6): 1115–1127. DOI: 10.1109/JPROC.2021.3073291
- 17. Kołodziejska A., Kozakiewicz A., Sibilski K. Jądrowy napęd statków powietrznych – idea, której czas nigdy nie powróci? Mechanika w lotnictwie, ML-XX 2022, https://doi.org/10.15632/ ML2022/185-201
- 18. Bahr D.W. Technology for the Design of High Temperature Rise Combustors. J. Propulsion. 1987; 3(2): 179–186. https://doi.org/10.2514/3.22971
- 19. Makida M., Yamada H., Yamamoto T. Development of Full Annular Combustor for Small Aircraft Jet Engine in JAXA TechCLEAN Project, 26TH International Congress of The Aeronautical Sciences, ICAS. 2008; 1–10. https://www.icas.org/ ICAS_ARCHIVE/ICAS2008/PAPERS/559.PDF, (Accessed on 2023-03-22)
- 20. Szczeciński S., Balicki W., Chachurski R., Głowacki P., Kozakiewicz A. Ekologia na lotniskach. Przegląd Sił Zbrojnych, 2014; 3: 85–89. https://zbrojni.blob. core.windows.net/pzdata/TinyMceFiles/PSZ_NR3. pdf, (Accessed on 2023-03-22)
- 21. Przysowa R., Gawron B., Białecki T., Ł˛egowik A., Merkisz J., Jasiński R. Performance and Emissions of a Microturbine and Turbofan Powered by Alternative Fuels, Aerospace 2021; 8: 25. https:// doi.org/10.3390/aerospace8020025
- 22. Białecki T., Dzięgielewski W., Kowalski M., Kulczycki A. Reactivity Model as a Tool to Compare the Combustion Process in Aviation Turbine Engines Powered by Synthetic Fuels, Energies. 2021; 14: 6302. https://doi.org/10.3390/en14196302
- 23. Enis T. Turgut, Oznur Usanmaz, Marc A. Rosen, Empirical analysis of the effect of descent flight path angle on primary gaseous emissions of commercial aircraft. Environmental Pollution. 2018; 236: 226– 235. https://doi.org/10.1016/j.envpol.2018.01.084
- 24. Zhang M., Filippone A. Optimum problems in environmental emissions of aircraft arrivals, Aerospace Science and Technology. 2022; 123: 107502. https:// doi.org/10.1016/j.ast.2022.107502
- 25. Ekenechukwu C., Okafor K.D., Kunkuma A. Somarathne, Rattanasupapornsak Ratthanan, Akihiro Hayakawa, Taku Kudo, Osamu Kurata, Norihiko Iki, Taku Tsujimura, Hirohide Furutani, Hideaki Kobayashi, Control of NOx and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia. Combustion and Flame. 2020; 211: 406–416. https://doi.org/10.1016/j.com- bustflame.2019.10.012 0010-2180
- 26. Li M., Wang Q., Zhao Y., Dai X., Shang W. Combustion and emission characteristics of a novel staged combustor for aero gas turbine engine, Aerospace Science and Technology. 2023; 134: 108169. https:// doi.org/10.1016/j.ast.2023.108169
- 27. Mahto N., Satyanarayanan R. Chakravarthy S.R. Response surface methodology for design of gas turbine combustor. Applied Thermal Engineer- ing. 2022; 211: 118449. https://doi.org/10.1016/j. applthermaleng.2022.118449
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e21dc1f9-a634-427a-889d-ed49114c983d