Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 14, No. 1 | 25--43
Tytuł artykułu

Bending path understanding based on angle projections in field environments

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Scene understanding is a core problem for field robots. However, many unsolved problems, like understanding bending paths, severely hinder the implementation due to varying illumination, irregular features and unstructured boundaries in field environments. Traditional three-dimensional(3D) environmental perception from 3D point clouds or fused sensors are costly and account poorly for field unstructured semantic information. In this paper, we propose a new methodology to understand field bending paths and build their 3D reconstruction from a monocular camera without prior training. Bending angle projections are assigned to clusters. Through compositions of their sub-clusters, bending surfaces are estimated by geometric inferences. Bending path scenes are approximated bending structures in the 3D reconstruction. Understanding sloping gradient is helpful for a navigating mobile robot to automatically adjust their speed. Based on geometric constraints from a monocular camera, the approach requires no prior training, and is robust to varying color and illumination. The percentage of incorrectly classified pixels were compared to the ground truth. Experimental results demonstrated that the method can successfully understand bending path scenes, meeting the requirements of robot navigation in an unstructured environment.
Słowa kluczowe
Wydawca

Rocznik
Strony
25--43
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
autor
  • Laboratory of 3D Scene Understanding and Visual Navigation, School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China, 15110240007@fudan.edu.cn
autor
  • Laboratory of Algorithms for Cognitive Models, School of Computer Science, Fudan University, Shanghai, 201203, China
Bibliografia
  • [1] E. J. GIBSON and R. D. WALK. The visual cliff. Sci. Am, 202: 64–71, 1960.
  • [2] Z. J. He and K. Nakayama. Visual attention to surfaces in three-dimensional space. Proc. Natl. Acad. Sci. U. S. A, 92 (24): 11155–11159, 1995.
  • [3] J. J. Koenderink, A. J. Van Doorn, and A. M. Kappers. Pictorial surface attitude and local depth comparisons. Percept. Psychophys, 58 (2): 163–173, 1996.
  • [4] Ludovic Magerand and Alessio Del Bue. Revisiting projective structure from motion: A robust and efficient incremental solution. IEEE Trans. Pattern Anal. Mach. Intell., 42(2): 430–443, 2020.
  • [5] Berta Bescós, Cesar Cadena, and José Neira. Empty cities: A dynamic-object-invariant space for visual SLAM. IEEE Trans. Robotics, 37 (2): 433–451, 2021.
  • [6] Saifullahi Aminu Bello, Cheng Wang, Naftaly Muriuki Wambugu, and Jibril Muhammad Adam. Ffpointnet: Local and global fused feature for 3d point clouds analysis. Neurocomputing, 461: 55–62, 2021.
  • [7] Andrea Cavagna, Stefania Melillo, Leonardo Parisi, and Federico Ricci-Tersenghi. Sparta tracking across occlusions via partitioning of 3d clouds of points. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43 (4): 1394–1403, 2021.
  • [8] Hui Wei and Luping Wang. Understanding of indoor scenes based on projection of spatial rectangles. Pattern Recognition, 81: 497–514, 2018.
  • [9] Armon Shariati, Bernd Pfrommer, and Camillo J. Taylor. Simultaneous localization and layout model selection in manhattan worlds. IEEE Robotics and Automation Letters, 4(2): 950–957, 2019.
  • [10] Luping Wang and Hui Wei. Indoor scene understanding based on manhattan and non-manhattan projection of spatial right-angles. J. Vis. Commun. Image Represent., 80: 103307, 2021.
  • [11] Jeong-Kyun Lee and Kuk-Jin Yoon. Joint estimation of camera orientation and vanishing points from an image sequence in a non-manhattan world. International Journal of Computer Vision, 127 (10): 1426–1442, 2019.
  • [12] Ifham Abdul Latheef Ahmed and Mohamed Hisham Jaward. Classifier aided training for semantic segmentation. Journal of Visual Communication and Image Representation, 78: 103177, 2021.
  • [13] Sudhanshu Mittal, Maxim Tatarchenko, and Thomas Brox. Semi-supervised semantic segmentation with high- and low-level consistency. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43 (4): 1369–1379, 2021.
  • [14] Petra Bosilj, Erchan Aptoula, Tom Duckett, and Grzegorz Cielniak. Transfer learning between crop types for semantic segmentation of crops versus weeds in precision agriculture. Journal of Field Robotics, 37 (1): 7–19, 2020.
  • [15] Lucas M. Tassis, Joao E. Tozzi de Souza, and Re-nato A. Krohling. A deep learning approach combining instance and semantic segmentation to identify diseases and pests of coffee leaves from in-field images. Computers and Electronics in Agriculture, 186: 106191, 2021.
  • [16] Andreas Bar, Jonas Lohdefink, Nikhil Kapoor, Serin John Varghese, Fabian Huger, Peter Schlicht, and Tim Fingscheidt. The vulnerability of semantic segmentation networks to adversarial attacks in autonomous driving: Enhancing extensive environment sensing. IEEE Signal Processing Magazine, 38 (1): 42–52, 2021.
  • [17] Luping Wang and Hui Wei. Recognizing slanted deck scenes by non-manhattan spatial right angle projection. IEEE Intelligent Systems, 37 (5): 75–85, 2022.
  • [18] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo. Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems, 19 (1): 263–272, 2018.
  • [19] F. Lateef, M. Kas, and Y. Ruichek. Saliency heat-map as visual attention for autonomous driving using generative adversarial network (gan). IEEE Transactions on Intelligent Transportation Systems, pages 1–14, 2021.
  • [20] Luping Wang and Hui Wei. Understanding of curved corridor scenes based on projection of spatial right-angles. IEEE Transactions on Image Processing, 29: 9345–9359, 2020.
  • [21] Leonardo Cabrera Lo Bianco, Jorge Beltrn, Gerardo Fernndez Lpez, Fernando Garca, and Abdulla Al-Kaff. Joint semantic segmentation of road objects and lanes using convolutional neural networks. Robotics and Autonomous Systems, 133: 103623, 2020.
  • [22] Ivan Kreso, Josip Krapac, and Sinisa Segvic. Efficient ladder-style densenets for semantic segmentation of large images. IEEE Transactions on Intelligent Transportation Systems, 22 (8): 4951–4961, 2021.
  • [23] Gjorgji Nikolovski, Michael Reke, Ingo Elsen, and Stefan Schiffer. Machine learning based 3d object detection for navigation in unstructured environments. In IEEE Intelligent Vehicles Symposium Workshops (IV Workshops), pages 236–242, 2021.
  • [24] Galadrielle Humblot-Renaux, Letizia Marchegiani, Thomas B. Moeslund, and Rikke Gade. Navigation-oriented scene understanding for robotic autonomy: Learning to segment drive-ability in egocentric images. IEEE Robotics and Automation Letters, 7 (2): 2913–2920, 2022.
  • [25] Andreas Kloukiniotis and Konstantinos Moustakas. Vanishing point detection based on the fusion of lidar and image data. In 30th Mediterranean Conference on Control and Automation, MED 2022, Vouliagmeni, Greece, June 28 - July 1, 2022, pages 688–692. IEEE, 2022.
  • [26] Marin Orsic and Sinisa Segvic. Efficient semantic segmentation with pyramidal fusion. Pattern Recognition, 110: 107611, 2021.
  • [27] Christopher J. Holder and Toby P. Breckon. Learning to drive: End-to-end off-road path prediction. IEEE Intell. Transp. Syst. Mag., 13 (2): 217–221, 2021.
  • [28] Bhakti Baheti, Shubham Innani, Suhas S. Gajre, and Sanjay N. Talbar. Semantic scene segmentation in unstructured environment with modified deeplabv3+. Pattern Recognit. Lett., 138: 223–229, 2020.
  • [29] Kasi Viswanath, Kartikeya Singh, P. Jiang, P. B. Sujit, and S.Saripalli. OFFSEG: A semantic segmentation framework for off-road driving. In 17th IEEE International Conference on Automation Science and Engineering, CASE, Lyon, France, pages 354–359, 2021.
  • [30] Luping Wang and Hui Wei. Avoiding non-manhattan obstacles based on projection of spatial corners in indoor environment. IEEE/CAA Journal of Automatica Sinica, 7: 1190 – 1200, 2020.
  • [31] Hui Wei and Luping Wang. Visual navigation using projection of spatial right-angle in indoor environment. IEEE Transactions on Image Processing, 27(7): 3164–3177, 2018.
  • [32] Luping Wang and Hui Wei. Curved alleyway understanding based on monocular vision in street scenes. IEEE Transactions on Intelligent Transportation Systems, 23 (7): 8544–8563, 2022.
  • [33] Paolo Arena, Carmelo Fabrizio Blanco, Alessia Li Noce, Salvatore Taffara, and Luca Patane. Learning traversability map of different robotic platforms for unstructured terrains path planning. In International Joint Conference on Neural Networks (IJCNN), pages 1–8, 2020.
  • [34] Paolo Arena, Fabio Di Pietro, Alessia Li Noce, Salvatore Taffara, and Luca Patanè. Assessment of navigation capabilities of mini cheetah robot for monitoring of landslide terrains. In 6th IEEE International Forum on Research and Technology for Society and Industry, RTSI 2021, Naples, Italy, September 6-9, 2021, pages 540–545. IEEE, 2021.
  • [35] Luping Wang and Hui Wei. Understanding of wheelchair ramp scenes for disabled people with visual impairments. Engineering Applications of Artificial Intelligence, 90: 103569, 2020.
  • [36] David D. Fan, Ali-akbar Agha-mohammadi, and Evangelos A. Theodorou. Learning risk-aware costmaps for traversability in challenging environments. IEEE Robotics and Automation Letters, 7 (1): 279–286, 2022.
  • [37] Wenbo Dong, Pravakar Roy, and Volkan Isler. Semantic mapping for orchard environments by merging two-sides reconstructions of tree rows. Journal of Field Robotics, 37 (1): 97–121, 2020.
  • [38] Daniel Maturana, Po-Wei Chou, Masashi Uenoyama, and Sebastian A. Scherer. Real-time semantic mapping for autonomous off-road navigation. In Field and Service Robotics, Results of the 11th International Conference, FSR, Zurich, Switzerland, volume 5, pages 335–350, 2017.
  • [39] Yi Yang, Di Tang, Dongsheng Wang, Wenjie Song, Junbo Wang, and Mengyin Fu. Multi-camera visual SLAM for off-road navigation. Robotics Auton. Syst., 128: 103505, 2020.
  • [40] Fowlkes C Arbelaez P, Maire M. From contours to regions: An empirical evaluation. In CVPR, pages 2294–2301, 2009.
  • [41] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The KITTI dataset. Int. J. Robotics Res., 32 (11): 1231–1237, 2013.
  • [42] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3213–3223, 2016.
  • [43] Kai A. Metzger, Peter Mortimer, and Hans-Joachim Wuensche. A fine-grained dataset and its efficient semantic segmentation for unstructured driving scenarios. In 25th International Conference on Pattern Recognition, ICPR, Virtual Event / Milan, Italy, pages 7892–7899, 2020.
  • [44] Maggie B. Wigness, Sungmin Eum, John G. Rogers, David Han, and Heesung Kwon. A RUGD dataset for autonomous navigation and visual perception in unstructured outdoor environments. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, Macau, SAR, China, pages 5000–5007, 2019.
  • [45] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene recognition from abbey to zoo. CVPR, pages 3485 – 3492, 2010.
  • [46] Y. Zhang, P. David, H. Foroosh, and B. Gong. A curriculum domain adaptation approach to the semantic segmentation of urban scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42 (8): 1823–1841, 2020.
  • [47] Y. Zhang, F. Yu, S. Song, P. Xu, A. Seff, and J. Xiao. Largescale scene understanding challenge: Room layout estimation. 2016.
  • [48] Chen-Yu Lee, Vijay Badrinarayanan, Tomasz Malisiewicz, and Andrew Rabinovich. Roomnet: End-to-end room layout estimation. In IEEE International Conference on Computer Vision, ICCV, pages 4875–4884, 2017.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e2189d07-eeec-42ee-ac0d-179c57ff15fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.