Czasopismo
2020
|
Vol. 38, No. 4
|
667--674
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Usually, remote phosphor structures are beneficial in terms of flux but unfavorable in terms of color quality compared to conformal phosphor or in-cup phosphor packages. To eliminate this disadvantage, many studies have focused on increasing the chromatic quality of the remote phosphor configuration, which requires great efforts in improving two parameters of color: color rendering index (CRI) and color quality scale (CQS). CRI is known as the most useful quantitative method used to measure the ability of a light source to reproduce the colors of illuminated objects faithfully and naturally. Similarly, CQS is also a method of lighting quality determination and analysis, especially used as an alternative to the unsaturated CRI colors. In this paper, we proposed dual-layer remote phosphor structure as a novel method of CRI and CQS enhancement to improve WLEDs’ color quality. Five alike WLEDs but having different color temperatures in the range of 5600 K to 8500 K were applied in this study. The idea behind the study is to place a red phosphor layer SrwFxByOz:Eu2+,Sm2+ on the yellow phosphor layer YAG:Ce3+ and then determining an appropriate concentration of SrwFxByOz:Eu2+,Sm2+ added to achieve the highest color quality. The results point out that SrwFxByOz:Eu2+,Sm2+ brings great benefits to the improvement of CRI and CQS parameters. Specifically, the higher the SrwFxByOz:Eu2+,Sm2+ concentration results in the greater CRI and CQS, owning to the enriched red light components in the WLEDs. However, the flux has a tendency of dropping when SrwFxByOz:Eu2+,Sm2+ concentration rises excessively. This has been proved by using the Mie-scattering theory and the Lambert-Beer law. The results of this article are essential references for manufacturing WLEDs with higher chromatic quality.
Czasopismo
Rocznik
Tom
Strony
667--674
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- Faculty of Electronics Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
autor
- Faculty of Fundamental 2, Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Vietnam
autor
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
autor
- Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam, nguyendoanquocanh@tdtu.edu.vn
autor
- Department of Electrical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
autor
- Department of Electrical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
autor
- Department of Electrical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
Bibliografia
- [1] TANG Q., QIU K., LI J., ZHANG W., ZENG Y., J. Mater. Sci.: Mater. Electron., 28 (2017), 18686.
- [2] JIN L., DU X., LEI X. REN L., FENG Y., CHEN W., Appl. Phys. A, 114 (2014), 631.
- [3] DI X., HE X., JIANG J., LI P., XIANG W., LIANG X., SHEN T., J. Mater. Sci.: Mater. Electron., 28 (2017), 8611.
- [4] SON K.H., JEON Y.M., OH M.M., Hortic. Environ. Biotechnol., 57 (2016), 560.
- [5] CHIU Z.W., HSIAO Y.J., FANG T.H., JI L.W., J. Sol-Gel Sci. Technol., 69 (2014), 299.
- [6] XUE H., ZHU Y., GE M., J. Mater. Sci.: Mater. Electron., 28 (2017), 9032.
- [7] MENG Y., ZHAO W. CHEN., J. Appl. Phys. A, 122 (2016), 636.
- [8] CHEN D.C., LIU Q.L., Rare Met., 33 (2014), 203.
- [9] CHEN D.C., SONG Z., LIU Z.G., DENG Z.H., WU L., CAO Y.G., LIU Q.L., Rare Met., 33 (2014), 80.
- [10] SHEN X., ZHANG D.F., FAN X.W., HU G.S., BIAN X.B., YANG L., J. Mater. Sci.: Mater. Electron., 27 (2016), 976.
- [11] GAME D.N., INGALE N.B., OMANWAR S.K., J. Mater. Sci.: Mater. Electron., 28 (2017), 915.
- [12] MANWAR Y.P., PALASPAGAR R.S., SONEKAR R.P., OMANWAR S.K., J. Mater. Sci.: Mater. Electron., 28 (2017), 994.
- [13] CHEN D.C., LIU Z.G., DENG Z.H., WANG C., CAO Y.G., LIU Q.L., Rare Met., 33 (2014), 348.
- [14] XIN S., ZHOU F., WANG C., LI Z., YUAN S., ZHU G., J. Mater. Sci.: Mater. Electron., 28 (2017), 19134.
- [15] GAO X., LEI L., YIN Y., XIE J., WANG Y., GU W., Russ. J. Phys. Chem., 88 (2014), 1232.
- [16] ZHANG W., YIN X., LIU Y., ZHANG N., ZHAO G., HOU J., FANG Y., J. Mater. Sci.: Mater. Electron., 27 (2016), 5357.
- [17] ZHOU L., HUANG J., MO F., Mater. Sci.-Poland, 32 (2014), 88.
- [18] RAJESH D., RATNAKARAM Y.C., NAIDU M.D., Indian. J. Phys., 88 (2014), 1291.
- [19] BAJAJ N.S., KOPARKAR K.A., NAGPURE P.A. OMANWAR S.K., J. Opt., 46 (2017), 91.
- [20] YEN W.M., WEBER M.J., Inorganic Phosphors: Compositions, Preparation and Optical Properties, CRC Press, LLC, 2000 N.W. Corporate Blvd., Boca Raton Florida 33431, 2004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e20cdcc6-ebe5-44a0-b3c1-9dde6ce8c880