Warianty tytułu
Języki publikacji
Abstrakty
This paper studies and describes stochastic orderings of risk/reward positions in order to define in a natural way risk/reward measures consistent/isotonic to investors’ preferences. We begin by discussing the connection between the theory of probability metrics, risk measures, distributional moments, and stochastic orderings. Then we examine several classes of orderings which are generated by risk probability functionals. Finally, we demonstrate how further orderings could better specify the investor’s attitude toward risk.
Czasopismo
Rocznik
Tom
Strony
203--234
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
- Department MSIA, University of Bergamo, Via dei Caniana, 2, 24127 Bergamo, Italy, sol@unibg.it
autor
- School of Economics and Business Engineering, University of Karlsruhe, Kollegium am Schloss, Bau II, 20.12, R210, Postfach 6980, D-76128, Karlsruhe, Germany, rachev@statistik.uni-karlsruhe.de
- Department of Statistics and Applied Probability, University of California, Santa Barbara, USA
- FinAnalytica Inc.
autor
- Department of Economics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, shalit@bgu.ac.il
autor
- School of Management, Yale University, USA, P.O. Box 208200, New Haven, CT 06520-8200, USA, frank.fabozzi@yale.edu
Bibliografia
- [1] B. C. Arnold, Majorization and the Lorenz Order: A Brief Introduction, Springer, 1987.
- [2] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, Coherent measures of risk, Math. Finance 9 (1999), pp. 203-228.
- [3] A. Biglova, S. Ortobelli, S. Rachev, and S. Stoyanov, Different approaches to risk estimation in portfolio theory, J. Portfolio Management 31 (2004), pp. 103-112.
- [4] E. De Giorgi, Reward-risk portfolio selection and stochastic dominance, J. Banking and Finance 29 (2005), pp. 895-926.
- [5] A. Erdelyi and A. C. McBride, Fractional integrals of distributions, SIAM J. Math. Anal. 1 (1970), pp. 547-557.
- [6] P. C. Fishburn, Continua of stochastic dominance relations for bounded probability distributions, J. Math. Economics 3 (1976), pp. 295-311.
- [7] P. C. Fishburn, Continua of stochastic dominance relations for unbounded probability distributions, J. Math. Economics 7 (1980), pp. 271-285.
- [8] P. C. Fishburn, Stochastic dominance and moments of distributions, Math. Oper. Res. 5 (1980), pp. 94-100.
- [9] H. Föllmer and A. Sheid, Convex measures of risk and trading constraints, Finance Stoch. 6 (2002), pp. 429-447.
- [10] M. Frittelli and E. Rosazza Gianin, Putting order in risk measures, J. Banking and Finance 26 (2002), pp. 1473-1486.
- [11] I. Gilboa and D. Schmeidler, Maxmin expected utility with non-unique prior, J. Math. Economics 18 (1989), pp.141-153.
- [12] G. A. Holton, Defining risk, Financial Analysts J. 60 (2004), pp. 19-25.
- [13] A. Kakosyan, L. Klebanov, and S. Rachev, Quantitative Criteria for Convergence of Measures (in Russian), Erevan, Ajastan Press, 1987.
- [14] V. V. Kalashnikov and S. Rachev, Mathematical Methods for Construction of Stochastic Queuing Models (in Russian), Nauka, Moskva 1988. English translation: Wadsworth, Brooks-Cole, Pacific Grove, California, 1990.
- [15] H. Li and H. Zhu, Stochastic equivalence of ordered random variables with applications in reliability theory, Statist. Probab. Lett. 20 (1994), pp. 383-393.
- [16] F. Maccheroni, M. Marinacci, A. Rusticini, and M. Toboga, Portfolio selection with monotone mean-variance preferences, Technical Report, University Bocconi, Milan 2005.
- [17] M. J. Machina, Expected utility analysis without the independence axiom, Econometrica 50 (1982), pp. 277-323.
- [18] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York 1993.
- [19] P. Muliere and M. Scarsini, A note on stochastic dominance and inequality measures, J. Econom. Theory 49 (1989), pp. 314-323.
- [20] A. Müller, Stochastic orders generated by integrals: a unified study, Adv. in Appl. Probab. 29 (1997), pp. 414-428.
- [21] A. Müller and D. Stoyan, Comparison Methods for Stochastic Models and Risks, Wiley, New York 2002.
- [22] G. L. O’Brien, Stochastic dominance and moments inequalities, Math. Oper. Res. 9 (1984), pp. 475-477.
- [23] W. Ogryczak and A. Ruszczynski, Dual stochastic dominance and quantile risk measures, Internat. Trans. Oper. Res. 9 (2002), pp. 661-680.
- [24] S. Ortobelli, Portfolio selection: moments analysis and safety first analysis, Ph.D. Thesis, University of Bergamo, 1999.
- [25] S. Ortobelli, S. Rachev, H. Shalit, and F. Fabozzi, Risk probability functionals and probability metrics applied to portfolio theory, Working Paper, Department of Probability and Applied Statistics, University of California, Santa Barbara, 2006.
- [26] S. Ortobelli, S. Rachev, S. Stoyanov, F. Fabozzi, and A. Biglova, The proper use of the risk measures in portfolio theory, Internat. J. Theoret. Appl. Finance 8 (2005), pp. 1-27.
- [27] S. Rachev, Probability Metrics and the Stability of Stochastic Models, Wiley, Chichester 1991.
- [28] S. Rachev, S. Ortobelli, S. Stoyanov, F. Fabozzi, and A. Biglova, Desirable properties of an ideal risk measure in portfolio theory, Internat. J. Theoret. Appl. Finance 11 (1) (2008), pp. 19-54.
- [29] S. Rachev and L. Rüschendorf, Mass Transportation Problems. Volume I: Theory, Springer, New York 1998.
- [30] S. Rachev and L. Rüschendorf, Mass Transportation Problems. Volume II: Applications, Springer, New York 1999.
- [31] M. Rothschild and J. Stiglitz, Increasing risk. I: Definition, J. Econom. Theory 2 (1970), pp. 225-243.
- [32] M. Shaked and J. G. Shanthikumar, Stochastic Orders, Springer, 2007.
- [33] S. Stoyanov, S. Rachev, S. Ortobelli, and F. J. Fabozzi, Relative deviation metrics and the problem of strategy replication, J. Banking and Finance 32 (2) (2008), pp. 199-206.
- [34] G. Szegö, Risk Measures for the 21st Century, Wiley, Chichester 2004.
- [35] Z. Szmydt and B. Ziemian, The Mellin Transformation and Fuchsian Type Partial Differential Equation, Kluwer Academic Publishers, Dordrecht 1992.
- [36] E. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford 1937.
- [37] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, New Jersey, 1953.
- [38] M. Yaari, The dual theory of choice under risk, Econometrica 55 (1987), pp. 95-115.
- [39] S. Zhang and J. Jin, Computation of Special Functions, Wiley, New York 1996.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e1cb157e-e2f1-4b8e-acfe-d287023fbaaa