Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 44 | 1--49
Tytuł artykułu

Simulation of Hardening Processes, in Silicate Systems

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we consider the Quasi-homogeneous Approximation to Describe the Properties of Disperse Systems. We have used the statistical polymer method is based on the consideration of averaged structures of all possible macromolecules of the same weight. One has derived equations allowing evaluation of all additive parameters of macromolecules and their systems. The statistical polymer method allows modeling of branched crosslinked macromolecules and their systems in equilibrium or non-equilibrium. The fractal consideration of statistical polymer allows modeling of all kinds of random fractal and other objects studied by fractal theory. The statistical polymer method is applicable not only to polymers but also to composites, gels, associates in polar liquids and other aggregates. In this paper Description of the state of colloidal solutions of silicon oxide from the viewpoint of statistical physics is based on the idea lies in the fact that a colloidal solution of silica - silica sol consists of a very large number of interacting with each other particles that are in continuous motion. It is devoted to the study of an idealized system of colliding, but non-interacting particles of sol. Analysis was conducted of the behavior of silica sol, in terms of Maxwell-Boltzmann distribution and was calculated the mean free path of the colloidal particles. Based on these data, it was calculated the number of particles capable to overcome the potential barrier in a collision. To modeling of the sol-gel transition kinetics had considered various approaches.
Wydawca

Rocznik
Tom
Strony
1--49
Opis fizyczny
Bibliogr. 25 poz., rys., wz.
Twórcy
  • HIT Holon Institute of Technology, 52 Golomb Street, POB 305 Holon 5810201, Israel, pgkudr89@gmail.com
  • Polymate Ltd - Israel Research Center, POBox 73, Migdal HaEmek 10550, Israel
Bibliografia
  • [1] Sletteri J., Theory of transfer of momentum, energy and mass in continuous media, M.,Mir, (1978).
  • [2 ] Heifetz L.I., Neumark A.V., Multiphase processes in porous media, M., (1982).
  • [3] Greiser, T., Jarchow, O., Klaska, K.-H. and Weiss, E. (1978), Dioxotetradecakis(trimethylsiloxo)octadecakupfer(I), Cu18O2[OSi(CH3)3]14, ein silikon-analoges Oligomeres mit Kupfer als Heteroatom im silikatischen Grundgerüst.Chem. Ber., 111: 3360-3366. doi: 10.1002/cber.19781111010
  • [4] Frank-Kamenetsky D.A., Diffusion and Heat Transfer in Chemical Kinetics, 3rd ed., M.,(1987).
  • [5] Heifetz L.I., Bruno E.B., Theoretical Foundations of Chemical Engineering 21(2) (1987) 191-214.
  • [6] Flory, P.J. Statistical Mechanics of Chain Molecules. Interscience, New York, (1969).
  • [7] Moshinsky, L. and Figovsky, O. Proc. Intern. Conf. “Corrosion in Natural and Industrial Environments: Problems and Solutions”, (1995), 699 p.
  • [8] Romm F. Derivation of the Equations for Isotherm Curves of Adsorption on Microporous Gel Materials, Langmuir, (1996), 12, 14, pp. 3490-3497.
  • [9] Romm F., J. Phys. Chem. 98(22) (1994) 5765-5767.
  • [10] Gontar, V. New theoretical approach for physicochemical reactions dynamics with chaotic behaviour. In Chaos in Chemistry and Biochemistry, World Scientific, London, 1993, pp. 225-247.
  • [11] Morachevsky A.P. Physical chemistry - surface phenomena and disperse systems - SPb., 2011.
  • [12] Smoluchowski M.V., Zeitschrift Fur Physikalische Chemie 92 (1917) 129.
  • [13] Schuman T.E.W., Quart. Yourn. R. Met. Soc. 66 (1940) 195.
  • [14] Ziff R. M. G., J. Chem. Phys. 73(7) (1980) 3492.
  • [15] Vinokourov L.I., Kats A.V. Power solutions of the kinetic equation for fixed aerosol coagulation. Izvestiya Academy of Sciences of the USSR. Physics of the atmosphere and ocean. 16(6) (1980) 601-607.
  • [16] Stockmayer W.H.Y. Chem. Phys. 11 (1943) 45.
  • [17] White W.H.Y. Colloid Interface Sci. 87 (1982) 204.
  • [18] Lushnikov A.A. Some new aspects of the theory of coagulation. Izvestiya Academy of Sciences of the USSR. Physics of the atmosphere and ocean. 14(10) (1978) 1046-1054.
  • [19] Domilovsky E.R., Lushnikov A.A., Piskunov V.N. Modeling of coagulation process Monte Carlo. DAN, 240(1) (1978) 108-110.
  • [20] Bondarev B.V., Kalashnikov N.P., Spirin G.G. General physics course: in 3 books. Book 3. Statistical physics. Structure of Matter. M.: Yurayt, 2013, 369 p.
  • [21] Zhyulne R. Fractal aggregates, UFN, 157(2) (1989) 339-357.
  • [22] Smirnov B.M. Properties of fractal aggregate, UFN, 157(2) (1989) 357-360.
  • [23] Lifshitz, EM, Pitaevskii, LP Statistical physics. Part 2. The theory of the condensed state. ("Theoretical Physics", Vol IX). - M.: FIZMATLIT, 2004. - 496 p.
  • [24] Levenshpil O. Engineering design of chemical processes, Chemistry, 1969
  • [25] Dorohov I.N., Kafarov V.V. Systematic analysis of the processes of chemical technology. Nauka, Moscow, 1989, 376 p.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1c20da5-35af-46df-ab35-5c56ba7595f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.