Czasopismo
2017
|
Vol. 65, no. 4
|
713--725
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Temporal mass variations in the Earth system, which can be detected from the Gravity Recovery and Climate Experiment (GRACE) mission data, cause temporal variations of geoid heights. The main objective of this contribution is to analyze temporal variations of geoid heights over the area of Poland using global geopotential models (GGMs) developed on the basis of GRACE mission data. Time series of geoid height variations were calculated for the chosen subareas of the aforementioned area using those GGMs. Thereafter, these variations were analyzed using two different methods. On the basis of the analysis results, models of temporal geoid height variations were developed and discussed. The possibility of prediction of geoid height variations using GRACE mission data over the area of Poland was also investigated. The main findings reveal that the geoid height over the area of Poland vary within 1.1 cm which should be considered when defining the geoid model of 1 cm accuracy for this area.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
713--725
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
- Institute of Geodesy and Cartography (IGiK), Warsaw, Poland, walyeldeen.godah@igik.edu.pl
autor
- Institute of Geodesy and Cartography (IGiK), Warsaw, Poland
autor
- Institute of Geodesy and Cartography (IGiK), Warsaw, Poland
Bibliografia
- 1. Bettadpur S (2012) UTCSR Level-2 processing standards document for level-2 product release 0005, GRACE 327–742, CSR Publ. GR-12-xx, Rev. 4.0, University of Texas at Austin
- 2. Chambers DP (2006) Evaluation of new GRACE time-variable gravity data over the ocean. Geophys Res Lett 33:17. doi:10.1029/2006GL027296
- 3. Dahle C, Flechtner F, Gruber C, König D, König R, Michalak G, Neumayer KH (2014) GFZ RL05: an improved time-series of monthly GRACE gravity field solutions, observation of the system earth from space–CHAMP, GRACE, GOCE and future missions. Adv Technol Earth Sci. doi:10.1007/978-3-642-32135-1_4
- 4. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270(1–2):105–134
- 5. Drewes H, Kuglitsch F, Adám J, Rózsa S (2016) The Geodesist’s handbook 2016. J Geod 90(10):907–1205. doi:10.1007/s00190-016-0948-z
- 6. Flechtner F, Neumayer K-H, Dahle C, Dobslaw H, Fagiolini E, Raimondo J-C, Güntner A (2016) What can be expected from the GRACE-FO laser ranging interferometer for earth science applications? Surv Geophys 37:453–470. doi:10.1007/s10712-015-9338-y
- 7. Floberghagen R, Fehringer M, Lamarre D, Muzi D, Frommknecht B, Steiger CH, Pineiro J, da Costa A (2011) Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. J Geod 85(11):749–758. doi:10.1007/s00190-011-0498-3
- 8. Guo J, Mu D, Liu X, Yan H, Sun Z, Guo B (2016) Water storage changes over the Tibetan plateau revealed by GRACE mission. Acta Geophys 64(2):463–476. doi:10.1515/acgeo-2016-0003
- 9. Krynski J (2007) Precise quasigeoid modelling in Poland-Results and accuracy estimation (in Polish), Monographic series of the Institute of Geodesy and Cartography, Nr 13. Warsaw, Poland
- 10. Krynski J, Łyszkowicz A (2006) Centimetre quasigeoid modelling in Poland using heterogeneous data. In: Proceedings of the 1st international symposium of the international gravity field service (IGFS), August 28–September 1, 2006, in Istanbul, Turkey, 123–127
- 11. Krynski J, Kloch-Glowka G, Szelachowska M (2014) Analysis of time variations of the gravity field over Europe obtained from GRACE data in terms of geoid height and mass variations. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet, IAG Symposia, vol 139. pp 365–370. doi:10.1007/978-3-642-37222-3_48
- 12. Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time variable GRACE-type gravity field models. J Geod 81(11):733–749
- 13. Kusche J, Schmidt R, Petrovic S, Rietbroek R (2009) Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. J Geod 83(10):903–913
- 14. Likkason OK (2011) Spectral analysis of geophysical data. In: DongMei C (ed) Advances in data, methods, Models and their applications in geoscience, Chapt 2. InTech. ISBN: 978-953-307-737-6. doi:10.5772/28070
- 15. Luthcke SB, Sabaka TJ, Loomis BD, Arendt AA, McCarthy JJ, Camp J (2013) Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J Glaciol 59(216):613–631. doi:10.3189/2013JoG12J147
- 16. Makridakis S, Wheelwright SC, Hyndman RJ (1998) Forecasting: methods and applications, 3rd edn. Wiley, New York. ISBN 978-0-471-53233-0
- 17. Marques de Sá JP (2007) Applied Statistics Using SPSS, STATISTICA, MATLAB and R, 2nd edn. Springer-Verlag, Berlin. doi:10.1007/978-3-540-71972-4
- 18. Matlab (2015) MATLAB version 8.6 (Matlab R2015b), Natick, The MathWorks Inc
- 19. Rangelova E (2007) A dynamic geoid model for Canada, PhD. Thesis, University of Calgary, Department of Geomatics Engineering, Report No. 20261
- 20. Rangelova E, Sideris MG (2008) Contributions of terrestrial and GRACE data to the study of the secular geoid changes in North America. J Geodyn 46(3):131–143
- 21. Rangelova E, Fotopoulos G, Sideris MG (2010) Implementing a dynamic geoid as a vertical datum for orthometric heights in Canada. In: Mertikas SPP (ed) Gravity, geoid and earth observation, IAG Commission 2 Gravity Field, Chania, Greece. IAG Symposia, 135:295–302, June 23–27, 2008, Springer
- 22. Reigber C, Lühr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30(2):129–134. doi:10.1016/S0273-1177(02)00276-4
- 23. SESWG (2002) Living on a restless planet. NASA—Solid Earth Science Working Group (SEWSG). http://solidearth.jpl.nasa.gov/PDF/SESWG_final_combined.pdf. Accessed 15 Oct 2016
- 24. Swenson S, Wahr J (2007) Multi-sensor analysis of water storage variations in the Caspian Sea. Geophys Res Lett 34:16401. doi:10.1029/2007GL030733
- 25. Szelachowska M, Krynski J (2014) GDQM-PL13—the new gravimetric quasigeoid model for Poland. Geoinform Issues 6(1):5–19
- 26. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi:10.1029/2004GL019920
- 27. Tapley B, Flechtner F, Watkins M, Bettadpur S (2015) GRACE mission: status and prospects. The GRACE Science Team Meeting, 21–23 September 2015, Austin, Texas
- 28. Torge W, Müller J (2012) Geodesy, 4th edn. Walter de Gruyter, Berlin-Boston
- 29. Tscherning CC, Arabelos D, Strykowski G (2000) The 1-cm geoid after GOCE. In: Sideris MG (ed), Gravity, geoid and geodynamics 2000. IAG Symposia, 123, pp 267–270
- 30. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30229
- 31. Watkins MM, Yuan D-N (2014) GRACE: JPL level-2 processing standards document for level-2 product release 05.1. GRACE 327–744 (v5.1), Jet Propulsion Laboratory, California Institute of Technology
- 32. Wei W (2006) Time series analysis: univariate and multivariate methods, 2nd edn. Pearson Addison Wesley, New York
- 33. Wu X, Heflin MB (2015) A global assessment of accelerations in surface mass transport. Geophys Res Lett 42(16):6716–6723. doi:10.1002/2015GL064941
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e1badc23-e6d1-4bc9-90a6-d2f88cb20baf