Czasopismo
2015
|
Vol. 15, No.1
|
94--102
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Optymalizacja przestrzennych struktur nowoczesnych materiałów za pomocą hybrydowej strategii ewolucyjnej
Języki publikacji
Abstrakty
In this paper, a new hybrid evolutionary-gradient algorithm is proposed to solve global numerical problems of topology optimization. The proposed algorithm is developed as a compromise between the direct and gradient-based optimization approaches. A short comparative study of computational results demonstrates the validity of the proposed method, as well as the necessity of its use.
W niniejszej pracy zaproponowano nowy, hybrydowy algorytm gradientowo-ewolucyjny do numerycznego rozwiązywania zagadnień z zakresu globalnej optymalizacji topologii. Proponowany algorytm stanowi kompromis między bezpośrednimi i gradientowymi metodami optymalizacji. Krótka analiza porównawcza wyników obliczeń wykazuje walidację proponowanej metody, a także konieczność jej stosowania.
Czasopismo
Rocznik
Tom
Strony
94--102
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- Institute of Technology, Faculty of Mathematics, Physics & Technical Sciences Kazimierz Wielki University ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland , jaceksnd@aim. com
Bibliografia
- Allaire, G., 2002, Shape Optimization by the Homogenization Method, Springer-Verlag, New York.
- Allaire, G., Jouve, F., Toader, A.-M., 2004, Structural Optimization Using Sensitivity Analysis and a Level-Set Method, J Comput Phys, 194, 363-393.
- Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B.S., Sigmund, O., 2011, Efficient Topology Optimization in MATLAB Using 88 Lines of Code, Struct Multidiscip O, 43, 1-16.
- Bendsoe, M., Kikuchi, N., 1988, Generating Optimal Topologies in Structural Design Using a Homogenization Method, Comput Method Appl M, 71, 197-224.
- Bendsøe, M.P., 1995, Optimization of Structural Topology, Shape, and Material, Springer-Verlag, Berlin, Heidelberg.
- Christensen, P.W., Klarbring, A., 2009, An Introduction to Structural Optimization, Springer Science + Business Media B.V.
- Deb, K., 2001, Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, Baffins Lane, Chichester, West Sussex.
- Fadel, G.M., Riley, M.F., Barthelemy, J.M., 1990, Two Point Exponential Approximation Method for Structural Optimization, Struct Optimization, 2, 117-124.
- Gain, A.L., Paulino, G.H., 2012, Phase-Field Based Topology Optimization with Polygonal Elements: A Finite Volume Approach for the Evolution Equation, Struct Multidiscip O, 46, 327 342.
- Madeira, J.A., Rodrigues, H.C., Pina, H., 2006, Multiobjective Topology Optimization of Structures Using Genetic Algorithms with Chromosome Repairing, Struct Multidiscip O, 32, 31 39.
- Rozvany, G.I.N., 2009, A Critical Review of Established Methods of Structural Topology Optimization, Struct Multidiscip O, 37, 217-237.
- Sethian, J.A., Wiegmann, A., 1999, Structural Boundary Design via Level Set and Immersed Interface Methods, J Comput Phys, 163,489-528.
- Sigmund, O., 2011, On the Usefulness of Non-Gradient Approaches in Topology Optimization, Struct Multidiscip O, 43, 589-596.
- Talischi, C, Paulino, G.H., Pereira, A., Menezes, I.F.M., 2012a, PolyMesher: a General-Purpose Mesh Generator for Polygonal Elements Written in Matlab, Struct Multidiscip O, 45, 309-328.
- Talischi, C, Paulino, G.H., Pereira, A., Menezes, I.F.M., 2012b, PolyTop: a Matlab Implementation of a General Topology Optimization Framework Using Unstructured Polygonal Finite Element Meshes, Struct Multidiscip O, 45, 329
- Vasconcellos, J.F.V. de, Maliska, C.R., 2004, A Finite-Volume Method Based on Voronoi Discretization for Fluid Flow Problems, Numer Heat Tr B-Fund, 45, 319-342.
- Young, V., Querin, O.M., Steven, G.P., Xie, Y.M., 1999, 3D and Multiple Load Case Bi-Directional Evolutionary Structural Optimization (BESO). Struct Optimization, 18(2-3), 183-192.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e19999ef-5534-4251-ba38-b75292cb3bbe