Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 46 | 149--162
Tytuł artykułu

Existence of traveling profiles solutions to porous medium equation

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we shall study the existence and uniqueness of solutions called "traveling profiles solutions" to the porous medium equation in one dimension. By these solutions, we generalize the results obtained by Gilding and Peletier who proved the existence of self similar solutions of type I, II and III to the same equation. The principal idea of our work is to convert the porous media equation in to an equivalent nonlinear differential equation, and to prove the existence and uniqueness of these new solutions under certain conditions.
Wydawca

Rocznik
Tom
Strony
149--162
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • Faculty of Mathematics and Computer science, Laboratory for Pure and Applied Mathematics, University of M’sila, Bp 166 M’sila, 28000, Algeria, yacine.arioua@univ-msila.dz
  • Faculty of Mathematics and Computer science, Laboratory for Pure and Applied Mathematics, University of M’sila, Bp 166 M’sila, 28000, Algeria, nouredine.benhamidouche@univ-msila.dz
Bibliografia
  • [1] W. F. Ames, Similarity for the nonlinear diffusion equation, I&f EC Fundamentals 4 (1965) 72-16.
  • [2] D. G. Aronson, L. A. Peletier, Large time behaviour of solutions of the porous medium equation in bounded domains, J. Diff. Eq. 39 (1981) 378-412.
  • [3] F. V. Atkinson, L. A. Peletier, Similarity profiles of flows through porous media, Arch. Rational Mech. Anal. 42 (1971) 369-379.
  • [4] G. I. Barenblatt, On some unsteady motions of a liquid or a gas in a porous medium, Prikl. Mat. Meh. 16 (1952) 67-78.
  • [5] G. I. Barenblatt, On limiting self-similar motions in the theory of unsteady filtration of a gas in a porous medium and the theory of the boundary layer, Prikl. Mat. Mek. 18 (1954) 409-414.
  • [6] G. I. Barenblatt, Similarity, Self-Similarity and Intermediate Asymptotics, Consultants Bureau, New York, 1979.
  • [7] N. Benhamidouche, Exact solutions to some nonlinear PDEs, travelling profiles method, Electronic Journal of Qualitative Theory of Differential Equation 15 (2008) 1-7.
  • [8] Y. Arioua, N. Benhamidouche, New method for constructing exact solutions to nonlinear PDEs, International Journal of Nonlinear Science 7 (4) (2009) 395-398.
  • [9] R. Djemiat, B. Basti, N. Benhamidouche, Analytical studies on the global existence and blow-up of solutions for a free boundary problem of two dimensional diffusion equations of moving fractional order, Advances in the Theory of Non-linear Analysis and its Applications 6 (3) (2022) 287-299.
  • [10] J. I. Diaz, R. Kersner, On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium, J. Differential Equations 69 (1987) 368-403.
  • [11] R. Chouder, N. Benhamidouche, Travelling profile solutions for nonlinear degenerate parabolic equation and contour enhancement in image processing, Applied Mathematics E-Notes 18 (2018) 1-12.
  • [12] B. E. Gilding, L. A. Peletier, On a class of similarity solutions of the porous medium equation I, II; and III, J. Math. Anal. Appl. 55 (1976) 351-364:II, 57 (1977) 522-538, 77, 38 1402 (1980).
  • [13] L. Matyas, I. F. Barna, General self-similar solutions of diffusion equation and related constructions, Romanian Journal of Physics 67 (2022) Article no. 101.
  • [14] R. E. Marshak, Effect of radiation on shock wave behaviour, Pkys. Fluids 1 (1958) 24-29.
  • [15] O. A. Oleinik, A. S. Kalashnikov, C. Yui-Ian, The Cauchy problem and boundary problems for equations of the type of unsteady filtration, IXJ, Akad. Nauk. SSSR Ser. Mat. 22 (1958) 667-704.
  • [16] L. Paude, J. Iaia, Traveling wave solutions of the porous medium equation with degenerate interfaces, Nonlinear Analysis: Theory, Methods & Applications 81 (2013) 110-129.
  • [17] A. D. Polyanin, A. I. Zhurov, A.V. Vyazmin, Generalized separation of variables and mass transfer equations, J. Non Equilib. Thermodyn 25 (2000) 251-267.
  • [18] P. L. Sachdev, Ch. Srinivasa Rao, Large Time Asymptotics for Solutions of Non-linear Partial Differential Equations, Springer Science+Business Media, LLC, 2010.
  • [19] J. L. Vazquez, The Porous Medium Equation: Mathematical Theory, Clarendon Press, Oxford, 2007.
  • [20] C. J Van Duyn, J. M De Graaf, Limiting profiles in contaminant transport through porous media, SIAM J. Math. Anal 18 (1987) 728-743.
  • [21] Ya. B. Zeldovich, Yu. P. Raizer, Physics of Shock-waves and High-temperature Hydrodynamic Phenomena Vol. II, Academic Press, New York, 1966.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e18cde28-7296-4735-bd6d-6082ba57edc6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.