Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2018 | No. 60 (1) | 65--75
Tytuł artykułu

Inherent optical properties and particulate matter distribution in summer season in waters of Hornsund and Kongsfjordenen, Spitsbergen

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two Spitsbergen fjords, Hornsund and Kongsfjorden, are known for being under different hydrological regimes. The first is cold, separated from warm Atlantic water by East Spitsbergen Current, while Kongsfjorden is frequently penetrated by relatively warm Atlantic water. On the other hand, both are under strong influence of water discharge from glaciers and land freshwater input. During the period of observation in both fjords a dominant water mass was Surface Water, which originates mainly from glacial melt. The presence of suspended matter introduced with melt water in Surface Water is reflected by highest values of light attenuation and absorption coefficients recorded in areas close to glacier both in Hornsund and Kongsfjorden. In Hornsund the maximum light attenuation coefficient cpg(555) was 5.817 m−1 and coefficient of light absorption by particles ap(676) = 0.10 m−1. In Kongsfjorden the corresponding values were 26.5 m−1and 0.223 m−1. In Kongsfjorden suspended matter of the size class 20-200 μm dominated over fractions smaller than 20 μm while in Hornsund dominating size fraction was 2-20 μm. The results provide an evidence of considerable range of variability of the optical properties mainly due to glacial and riverine runoff. The scale of variability of particulate matter in Kongsfjorden is bigger than in Hornsund. Most of the variability in Hornsund can be attributed to glaciers discharge and a presence of particles of mineral origin, while in Kongsfjorden the organic and mineral particles contribute almost equally to defining the optical properties of water.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Strony
65--75
Opis fizyczny
Bibliogr. 39 poz., mapy, tab., wykr.
Twórcy
autor
autor
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • [1] Agrawal, Y. C., Pottsmith, H. C., 2000. Size and settling velocity observations in sediment transport. Mar. Geol. 168, 114-890.
  • [2] Aksnes, D., Dupont, N., Staby, A., Fiksen, Ø., Kaartvedt, S., Aure, J., 2009. Coastal water darkening and implications for mesopelagic regime shifts in Norwegian fjords. Mar. Ecol. Prog. Ser. 387, 39-49.
  • [3] Babin, M., Stramski, D., Ferrari, G. M., Claustre, H., Bricaud, A., Obolensky, G., Hoepffner, N., 2003a. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res. 108 (C7), 3211, 4-1-4-20.
  • [4] Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., Stramski, D., 2003b. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnol. Oceanogr. 48, 843-859, http://dx.doi.org/10.4319/lo.2003.48.2.0843.
  • [5] Bowers, D. G., Binding, C. E., 2006. The optical properties of mineral suspended particles: a review and synthesis. Estuar. Coast. Shelf Sci. 67, 219-230.
  • [6] Cottier, F., Tverberg, V., Inall, M., Svendsen, H., Nilsen, F., Griffiths, C., 2005. Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden. Svalbard. J. Geophys. Res. 110 (C12), C12005, 18 pp.
  • [7] Cottier, F. R., Nilsen, F., Skogseth, R., Tverberg, V., Skarðhamar, J., Svendsen, H., 2010. Arctic fjords: a review of the oceanographic environment and dominant physical processes. Geol. Soc. Lond. Spec. Publ. 344, 35-50.
  • [8] Görlich, K., 1986. Glacimarine sedimentation of muds in Hornsund Fjord, Spitsbergen. Ann. Soc. Geol. Pol. 56, 433-477.
  • [9] Granskog, M. A., Macdonald, R. W., Mundy, C.-J., Barber, D. G., 2007. Distribution, characteristics and potential impacts of chromophoric dissolved organic matter (CDOM) in Hudson Strait and Hudson Bay, Canada. Cont. Shelf Res. 27, 2032-2050.
  • [10] Hegseth, E. N., Tverberg, V., 2013. Effect of Atlantic water in flow on timing of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard). J. Mar. Syst. 113-114, 94-105, http://dx.doi.org/10.1016/j.jmarsys.2013.01.003.
  • [11] Hood, E., Fellman, J., Spencer, R. G. M., Hernes, P. J., Edwards, R., D'Amore, D., Scott, D., 2009. Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462, 1044-1047, http://dx.doi.org/10.1038/nature08580.
  • [12] Inall, M. E., Nilsen, F., Cottier, F. R., Daae, R., 2015. Shelf/fjord exchange driven by coastal-trapped waves in the Arctic. J. Geophys. Res. 120, 8283-8303.
  • [13] Kohler, J., James, T. D., Murray, T., Nuth, C., Brandt, O., Barrand, N. E., Aas, H. F., Luckman, A., 2007. Acceleration in thinning rate on western Svalbard glaciers. Geophys. Res. Lett. 34 (18), L18502, http://dx.doi.org/10.1029/2007GL030681 5 pp.
  • [14] Kowalczuk, P., 1999. Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea. J. Geophys. Res. 104 (C12), 30047-30058.
  • [15] Kuliński, K., Kędra, M., Legeżyńska, J., Gluchowska, M., Zaborska, A., 2014. Particulate organic matter sinks and sources in high Arctic fjord. J. Mar. Syst. 139, 27-37.
  • [16] Levin, I., Darecki, M., Sagan, S., Radomyslskaya, T., 2013. Relationships between inherent optical properties in the Baltic Sea for application to the underwater imaging problem. Oceanologia 55 (1), 11-26, http://dx.doi.org/10.5697/oc.55-1.011.
  • [17] Mortensen, J., Bendtsen, J., Motyka, R. J., Lennert, K., Truffer, M., Fahnestock, M., Rysgaard, S., 2013. On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord. J. Geophys. Res. 118, 1382-1395.
  • [18] Muckenhuber, S., Nilsen, F., Korosov, A., Sandven, S., 2016. Sea ice cover in Isfjorden and Hornsund, Svalbard (2000-2014) from remote sensing data. Cryosphere 10, 149-158.
  • [19] Neukermans, G., Reynolds, R. A., Stramski, D., 2016. Optical classification and characterization of marine particle assemblages within the western Arctic Ocean. Limnol. Oceanogr. 61, 1472-1494.
  • [20] Nima, C., Frette, Ø., Hamre, B., Erga, S. R., Chen, Y.-C., Zhao, L., Sørensen, K., Norli, M., Stamnes, K., Stamnes, J. J., 2016. Absorption properties of high-latitude Norwegian coastal water: the impact of CDOM and particulate matter. Estuar. Coast. Shelf Sci. 178, 158-167, http://dx.doi.org/10.1016/j.ecss.2016.05.012.
  • [21] Ormańczyk, M. R., Gluchowska, M., Olszewska, A., Kwasniewski, S., 2017. Zooplankton structure in high latitude fjords with contrasting oceanography (Hornsund and Kongsfjorden, Spitsbergen). Oceanologia 59 (4), 508-524, http://dx.doi.org/10.1016/j.oceano.2017.06.003.
  • [22] Pavlov, A. K., Tverberg, V., Ivanov, B. V., Nilsen, F., Falk-Petersen, S., Granskog, M. A., 2013. Warming of Atlantic Water in two west Spitsbergen fjords over the last century (1912-2009). Polar Res. 32 (1), 11206, http://dx.doi.org/10.3402/polar.v32i0.11206 14 pp.
  • [23] Pavlov, A. K., Granskog, M. A., Stedmon, C. A., Ivanov, B. V., Hudson, S. R., Falk-Petersen, S., 2015. Contrasting optical properties of surface waters across the Fram Strait and its potential biological implications. J. Mar. Syst. 143, 62-72, http://dx.doi.org/10.1016/j.jmarsys.2014.11.001.
  • [24] Pegau, W. S., 2002. Inherent optical properties of the central Arctic surface waters. J. Geophys. Res. 107 (C10), http://dx.doi.org/10.1029/2000JC000382 16 pp.
  • [25] Piwosz, K., Walkusz, W., Hapter, R., Wieczorek, P., Hop, H., Wiktor, J., 2009. Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in mid-summer 2002. Polar Biol. 32, 549-559, http://dx.doi.org/10.1007/s00300-008-0549-2.
  • [26] Rudels, B., Björk, G., Nilsson, J., Winsor, P., Lake, I., Nohr, C., 2005. The interaction between waters from the Arctic Ocean and the Nordic Seas north of Fram Strait and along the East Greenland Current: results from the Arctic Ocean-02 Oden expedition. J. Mar. Syst. 55 (1-2), 1-30, http://dx.doi.org/10.1016/j.jmarsys.2004.06.008.
  • [27] Saloranta, T. M., Svendsen, H., 2001. Across the Arctic front west of Spitsbergen: high-resolution CTD sections from 1998-2000. Polar Res. 20, 177-184.
  • [28] Sieburth, J. M., Smetacek, V., Lenz, J., 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23, 1256-1263.
  • [29] Stedmon, C., Amon, R. M. W., Rinehart, A. J., Walker, S. A., 2011. The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan Arctic trends and differences. Mar. Chem. 124, 108-118.
  • [30] Stramski, D., Bricaud, A., Morel, A., 2001. Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community. Appl. Opt. 40, 2929-2945.
  • [31] Stramski, D., Boss, E., Bogucki, D., Voss, K. J., 2004. The role of seawater constituents in light backscattering in the ocean. Progr. Oceanogr. 61, 27-56.
  • [32] Sullivan, J. M., Twardowski, M. S., Zaneveld, J. R. V., Moore, C. M., Barnard, A. H., Donaghay, P. L., Rhoades, B., 2006. The hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range. Appl. Opt. 45, 5294-5309, http://dx.doi.org/10.1364/AO.45.005294.
  • [33] Svendsen, H., Beszczynska-Moller, A., Hagen, J. O., Lefauconnier, B., Tverberg, V., Gerland, S., Orback, J. B., Bischof, K., Papucci, C., Zajaczkowski, M., Azzolini, R., Bruland, O., Wiencke, C., Winther, J.-G., Dallmann, W., 2002. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res. 21, 133-166.
  • [34] van de Hulst, H. C., 1957. Light Scattering by Small Particles. John Wiley & Sons, New York, 470 pp.
  • [35] Voss, K. J., 1992. A spectral model of the beam attenuation coefficient in the ocean and coastal areas. Limnol. Oceanogr. 37 (3), 501-509.
  • [36] Weslawski, J. M., Jankowski, A., Kwasniewski, S., Swerpel, S., Ryg, M., 1991. Summer hydrology and zooplankton in two Svalbard Fjords. Pol. Polar Res. 12, 445-460.
  • [37] Węsławski, J. M., Buchholz, F., Głuchowska, M., Weydmann, A., 2017. Ecosystem maturation follows the warming of the Arctic fjords. Oceanologia 59 (4), http://dx.doi.org/10.1016/j.oceano.2017. 02.002 (in press).
  • [38] Wlodarska-Kowalczuk, M., Weslawski, J. M., 2001. Impact of climate warming on Arctic benthic biodiversity: a case study of two Arctic glacial bays. Clim. Res. 18, 127-132.
  • [39] Zaneveld, J. R. V., Kitchen, J. C., Moore, C., 1994. The scattering error correction of reflecting-tube absorption meters. In: Ocean Optics XII, Proc. SPIE, vol. 2258. 44-55.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e1136489-8d5b-42d4-81c3-47f155d5db7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.