Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 3 | art. no. e163, 2023
Tytuł artykułu

The effect of non-uniform steel bar corrosion on pre-stressed RC members subjected to hysteretic load at the mid-span: experimental study and three-dimensional FEM modeling

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the chloride-rich environment, reinforced concrete (RC) structures may suffer from different types of non-uniform rebar corrosion (NURC). The effect of different types of non-uniform rebar corrosion on the cyclic behavior of RC beams under axial load has been studied here by experimental and numerical study. The structural behavior of three RC beams with the same dimensions and reinforcement configuration was examined under reversed cyclic loading. Two RC beams were subjected to different types of non-uniform rebar corrosion, and another beam was used as a sound specimen. The specimens were subjected to an axial load equivalent to 5% of the axial capacity. The obtained results revealed that cross-sectional non-uniformity leads to a notable difference in the yield strength, maximum strength, and stiffness in the positive and negative loading cycles. Nevertheless, interestingly the presence of corrosion pit did not affect the ductility of the RC beams. To predict the structural response of RC beams with different kinds of non-uniform corrosion and axial load, a numerical model was developed by extending the author’s previous numerical model for RC beams. Thereafter, the numerical model was verified with the results obtained from the experiment. The obtained results revealed that the axial loading improves the displacement capacity and load-carrying capacity of the non-uniformly corroded RC beams significantly. Finally, a parametric study was carried out to examine the effect of different crucial factors on the cyclic behavior of RC beams subjected to various non-uniform corrosion and axial load.
Wydawca

Rocznik
Strony
art. no. e163, 2023
Opis fizyczny
Bibliogr. 44 poz., rys., wykr.
Twórcy
  • Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-21, O-okayama, Meguro, Tokyo 152-8552, Japan, iwanami@cv.titech.ac.jp
  • Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-21, O-okayama, Meguro, Tokyo 152-8552, Japan, chijiwa@cv.titech.ac.jp
Bibliografia
  • 1. Page C. Corrosion and protection of reinforcing steel in con- crete. Durability of concrete and cement composites. Cam- bridge: Woodhead Publ. Ltd. LLC; 2007. p. 136–86.
  • 2. Tuutti K. Corrosion of steel in concrete. Stockholm: Swedish Cem. Concr. Res. Institute; 1982.
  • 3. Błaszczyn T. The influence of internal corrosion on the durabil- ity of concrete. Arch Civ Mech Eng. 2012;12:219–27. https:// doi.org/10.1016/j.acme.2012.03.002.
  • 4. Yuan W, Guo AL. Experimental investigation on the cyclic behaviors of corroded coastal bridge piers with transfer of plas- tic hinge due to non-uniform corrosion. Soil Dyn Earthq Eng. 2017;102:112–23. https:// doi. org/ 10. 1016/j. soild yn. 2017. 08. 019.
  • 5. Guo A, Li H, Ba X, Guan X, Li H. Experimental investigation on the cyclic performance of reinforced concrete piers with chloride-induced corrosion in marine environment. Eng Struct. 2015;105:1–11. https://doi.org/10.1016/j.engstruct.2015.09.031.
  • 6. Yang SY, Song XB, Jia HX, Chen X, Liu X. Experimental research on hysteretic behaviors of corroded reinforced concrete columns with different maximum amounts of corrosion of rebar. Constr Build Mater. 2016;121:319–27. https://doi.org/10.1016/j. conbuildmat.2016.06.002.
  • 7. Rajput AS, Sharma UK. Corroded reinforced concrete columns under simulated seismic loading. Eng Struct. 2018;171:453–63. https://doi.org/10.1016/j.engstruct.2018.05.097.
  • 8. Chang ZQ, Xing GH, Luo DM, Liu BQ. Seismic behaviour and strength prediction of corroded RC columns subjected to cyclic loading. Mag Concr Res. 2019;72:1–19.
  • 9. Goksu C, Ilki A. Seismic behavior of reinforced concrete col- umns with corroded deformed reinforcing bars. ACI Struct J. 2016;113:1053–64. https://doi.org/10.14359/51689030.
  • 10. Vu NS, Li B. Seismic performance of flexural reinforced con- crete columns with corroded reinforcement. ACI Struct J. 2018;115:1253–66. https://doi.org/10.14359/51702372.
  • 11. Meda A, Mostosi S, Rinaldi Z, Riva P. Experimental evaluation of the corrosion influence on the cyclic behaviour of RC columns. Eng Struct. 2014;76:112–23. https://doi.org/10.1016/j.engstruct. 2014.06.043.
  • 12. Ma Y, Che Y, Gong J. Behavior of corrosion damaged circular reinforced concrete columns under cyclic loading. Constr Build Mater. 2012;29:548–56. https://doi.org/10.1016/j.conbuildmat. 2011.11.002.
  • 13. Luo X, Cheng J, Xiang P, Long H. Seismic behavior of corroded reinforced concrete column joints under low-cyclic repeated loading. Arch Civ Mech Eng. 2020. https:// doi. org/ 10. 1007/ s43452-020-00043-z.
  • 14. Zhu W, François R. Corrosion of the reinforcement and its influ- ence on the residual structural performance of a 26-year-old cor- roded RC beam. Constr Build Mater. 2014;51:461–72. https://doi. org/10.1016/j.conbuildmat.2013.11.015.
  • 15. Matsushita R, Takahashi R, Saito N. An experimental study on bending deformation performance of the corroded reinforced con- crete beams. Concr Eng Annu Proc. 2010;32:1483–8.
  • 16. Castel A, François R, Arliguie G. Mechanical behaviour of cor- roded reinforced concrete beams—part 1: experimental study of corroded beams. Mater Struct. 2000;33:539–44. https://doi.org/ 10.1007/BF02480533.
  • 17. Ou Y, Tsai L, Chen H. Cyclic performance of large-scale cor- roded reinforced concrete beams. Earthq Eng Struct Dyn. 2012;41:593–604.
  • 18. Wang L, Zhang X, Zhang J, Ma Y, Liu Y. Effects of stirrup and inclined bar corrosion on shear behavior of RC beams. Constr Build Mater. 2015;98:537–46. https:// doi. org/ 10. 1016/j. conbu ildmat.2015.07.077.
  • 19. Biswas RK, Iwanami M, Chijiwa N, Uno K. Effect of non-uni- form rebar corrosion on structural performance of RC structures: a numerical and experimental investigation. Constr Build Mater. 2020;230: 116908. https://doi.org/10.1016/j.conbuildmat.2019. 116908.
  • 20. Li D, Wei R, Xing F, Sui L, Zhou Y, Wang W. Influence of non- uniform corrosion of steel bars on the seismic behavior of rein- forced concrete columns. Constr Build Mater. 2018;167:20–32. https://doi.org/10.1016/j.conbuildmat.2018.01.149.
  • 21. Manisekar R. Effect of external post-tensioning in retrofitting of RC beams effect of external post-tensioning in retrofitting of RC beams. J Inst Eng Ser A. 2020. https://doi.org/10.1007/ s40030-018-0312-9.
  • 22. Lee S, Shin K, Lee H. Applied sciences post-tensioning steel rod system for flexural strengthening in damaged reinforced concrete (RC) beams. Appl Sci. 2018;8:1763. https:// doi. org/ 10. 3390/ app8101763.
  • 23. Sirimontree S, Teerawong J. Flexural behaviors of damaged full- scale highway bridge girder strengthened by external post tension. Am J Eng Appl Sci. 2010;3:650–62.
  • 24. El-Basiouny AM, Hamed B, Mohamad SA, Zoughiby EE. Experimental and numerical study on the performance of exter- nally prestressed reinforced high strength concrete beams with openings. SN Appl Sci. 2021;3:1–19. https:// doi. org/ 10. 1007/ s42452-020-04023-z.
  • 25. Suntharavadivel TG. Overview of external post-tensioning in bridges; 2005. p. 1–10.
  • 26. Vu NS, Yu B, Li B. Prediction of strength and drift capacity of corroded reinforced concrete columns. Constr Build Mater. 2016;115:304–18. https://doi.org/10.1016/j.conbuildmat.2016. 04.048.
  • 27. Carlo D, Meda A, Rinaldi Z. Numerical evaluation of the corro- sion influence on the cyclic behaviour of RC columns. Eng Struct. 2017;153:264–78. https://doi.org/10.1016/j.engstruct.2017.10. 020.
  • 28. Hanjari Z, Kettil P, Lundgren K. Analysis of mechanical behav- ior of corroded reinforced concrete structures. ACI Struct J. 2012;108:532–41.
  • 29. Coronelli D, Gambarova P. Structural assessment of corroded reinforced concrete beams: modeling guidelines. J Struct Eng 2004;130:1214–24. https:// doi. org/ 10. 1061/ (ASCE) 0733- 9445(2004)130:8(1214).
  • 30. Paul SC, van Zijl GPAG. Chloride-induced corrosion modelling of cracked reinforced SHCC. Arch Civ Mech Eng. 2016;16:734–42. https://doi.org/10.1016/j.acme.2016.04.016.
  • 31. German M, Pamin J. FEM simulations of cracking in RC beams due to corrosion progress. Arch Civ Mech Eng. 2015. https://doi. org/10.1016/j.acme.2014.12.010.
  • 32. An X, Maekawa K, Okamura H. Numerical simulation of size effect in shear strength of RC beams. J Mater Concr Struct Pave- ment JSCE. 1997;35:297–316. https://doi.org/10.2208/jscej.1997. 564_297.
  • 33. Maekawa K, Pimanmas A, Okamura H. Nonlinear mechan- ics of reinforced concrete. London: Spon Press; 2003. ISBN 0203302885.
  • 34. Toongoenthong K, Maekawa K. Simulation of coupled corrosive product formation, migration into crack and propagation in rein- forced concrete sections. J Adv Concr Technol. 2005;3:253–65. https://doi.org/10.3151/jact.3.253.
  • 35. Toongoenthong K, Maekawa K. Multi-mechanical approach to structural performance assessment of corroded RC members in shear. J Adv Concr Technol. 2007;3:107–22. https://doi.org/10. 3151/jact.3.107.
  • 36. Yoon S, Wang K, Weiss WJ, Shah SP. Interaction between load- ing, corrosion, and serviceability of reinforced concrete. ACI Struct J. 2000;97:637–44. https://doi.org/10.14359/9977.
  • 37. Zhang W, Zhou B, Gu X, Dai H. Probability distribution model for cross-sectional area of corroded reinforcing steel bars. J Mater Civ Eng. 2014;26(5):822–32. https://doi.org/10.1061/(ASCE)MT. 1943-5533.0000888.
  • 38. Chijiwa N, Maekawa K. Thermo-hygral case-study on full scale RC building under corrosive environment and seismic actions. J Adv Concr Technol. 2015;13:465–78. https://doi.org/10.3151/jact. 13.465.
  • 39. Biswas RK, Iwanami M, Chijiwa N, Nakayama K. Numeri- cal evaluation on the effect of steel bar corrosion on the cyclic behaviour of RC bridge piers. Mater Today Proc. 2021;44:2393–8. https://doi.org/10.1016/j.matpr.2020.12.453.
  • 40. Biswas RK, Iwanami M, Chijiwa N, Uno K. Finite element analy- sis of RC beams subjected to non-uniform corrosion of steel bars. In: Proceedings of the sustainable construction materials and tech- nologies, vol. 1; 2019.
  • 41. Biswas RK, Iwanami M, Chijiwa N, Nakayama K. Structural assessment of the coupled influence of corrosion damage and seis- mic force on the cyclic behaviour of RC columns. Constr Build Mater. 2021;304:124706. https://doi.org/10.1016/j.conbuildmat. 2021.124706.
  • 42. Kurihara R, Chijiwa N, Maekawa K. Thermo-hygral analysis on long-term natural frequency of RC buildings with different dimen- sions. J Adv Concr Technol. 2017;15:381–96. https://doi.org/10. 3151/jact.15.381.
  • 43. Biswas RK, Iwanami M, Chijiwa N, Saito T, Chuquitaype CM. A simplified approach to evaluate cyclic response and seismic fra- gility of corrosion damaged RC bridge piers. Dev Built Environ. 2022;12: 100083. https://doi.org/10.1016/j.dibe.2022.100083.
  • 44. Biswas RK, Iwanami M, Chijiwa N, Uno K. Finite element analy- sis of RC beams subjected to non-uniform corrosion of steel bars. In: 5th International conference on sustainable construction mate- rials and technologies.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e0ef2dc8-97a5-448e-be48-8733d98f6640
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.