Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | R. 89, nr 6 | 32--40
Tytuł artykułu

Cooperative control of smart micro-grids based on conservative power commands

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Kooperacyjne sterowanie inteligentnych mikro-sieci oparte na kontroli mocy zachowawczej
Języki publikacji
EN
Abstrakty
EN
Smart micro-grids offer a new and wide application domain for power electronics. In fact, every distributed energy resource (DER) includes an electronic power processor (EPP) capable to control the active and reactive power flow from/to the distribution grid. If such EPPs perform cooperatively, they have the capability to fully exploit every local energy source while improving both power quality and distribution efficiency. This is of particular relevance in low-voltage residential micro-grids, where a plethora of small DERs may be active at the same time and the co-ordination of their operation can greatly improve the micro-grid performance. A simple and effective solution to achieve cooperative operation of EPPs is described in the paper. It makes use of a control method which requires power data exchange within the micro-grid and provides quasiminimum distribution losses and local voltage support.
PL
Inteligentne mikro-sieci są obszarem nowych zastosowań energoelektroniki. Każde źródło rozproszonej energii (ang.: distributed energy resource - DER) zawiera procesor energoelektroniczny (ang.: electronic power processor – EPP) zdolny kontrolować przepływ mocy czynnej i mocy biernej ze źródła do sieci rozdzielczej i w kierunku odwrotnym. Jeśli EPP działają kooperatywnie mają wówczas zdolność pełnego wykorzystania każdego źródła, poprawiając jednocześnie jakość energii i sprawność jej rozdziału. Jest to szczególnie ważne w mikro-sieciach osiedlowych niskiego napięcia, w których może być jednocześnie czynnych wiele małych DER i koordynacja ich pracy może właściwości mikro-sieci znacząco poprawić. Niniejszy artykuł przedstawia proste i skuteczne rozwiązanie kooperatywnej współpracy EPP. Rozwiązanie to wykorzystuje metody sterowania, wymagające wymiany informacji wewnątrz mikro-sieci. Zapewnia ono niemal minimalne dystrybucyjne straty energii i lokalną kontrolę napięcia.
Wydawca

Rocznik
Strony
32--40
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • University of Padova, Italy
  • University of Padova, Italy
Bibliografia
  • [1] Ipakchi and F. Albuyeh, “Grid of the future,” Power and Energy Magazine, IEEE, vol. 7, no. 2, pp. 52 –62, march-april 2009.
  • [2] H. Farhangi, “The path of the smart grid,” Power and Energy Magazine, IEEE, vol. 8, no. 1, pp. 18 –28, january-february 2010.
  • [3] D. Bakken, A. Bose, C. Hauser, D. Whitehead, and G. Zweigle, “Smart generation and transmission with coherent, real-time data,” Proc. IEEE, vol. 99, no. 6, pp. 928 –951, june 2011.
  • [4] R. Anderson, A. Boulanger, W. Powell, and W. Scott, “Adaptive stochastic control for the smart grid,” Proc. IEEE, vol. 99, no. 6, pp. 1098 –1115, june 2011.
  • [5] Dimeas and N. Hatziargyriou, “Operation of a multiagent system for microgrid control,” IEEE T. Power. Syst., vol. 20, no. 3, pp. 1447 – 1455, aug. 2005.
  • [6] J.-Y. Kim, J.-H. Jeon, S.-K. Kim, C. Cho, J. H. Park, H.-M. Kim, and K.-Y. Nam, “Cooperative control strategy of energy storage system and microsources for stabilizing the microgrid during islanded operation,” IEEE T. Power. Electr., vol. 25, no. 12, pp. 3037 –3048, dec. 2010.
  • [7] A. Mohsenian-Rad, V. Wong, J. Jatskevich, R. Schober, and A. Leon-Garcia, “Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid,” IEEE T. Smart Grids, vol. 1, no. 3, pp. 320 –331, dec. 2010.
  • [8] P.Tenti, D.Trombetti, P.Mattavelli, A. Costabeber: “Distribution Loss Minimization by Token Ring Control of Power Electronic Interfaces in Residential Micro-Grids”, IEEE International Symposium on Industrial Electronics (ISIE 2010), Bari, July 2010.
  • [9] A. Costabeber, P. Tenti, and P. Mattavelli, “Distributed cooperative control of low-voltage residential microgrids,” in Power Electronics for Distributed Generation Systems (PEDG), 2012 3rd IEEE International Symposium on, june 2012, pp. 457 –463.
  • [10] A. Costabeber, T. Erseghe, P. Tenti, S. Tomasin, and P. Mattavelli, “Optimization of micro-grid operation by dynamic grid mapping and token ring control,” Proceedings of the 2011- 14th European Conference on Power Electronics and Applications (EPE 2011), 30 2011-sept. 1 2011, pp. 1 –10.
  • [11] R. Majumder, A. Ghosh, G. Ledwich, and F. Zare, “Power management and power flow control with back-to-back converters in a utility connected microgrid,” IEEE T. Power. Syst., vol. 25, no. 2, pp. 821 –834, may 2010.
  • [12] Cagnano, E. De Tuglie, M. Liserre, and R. Mastromauro, “Online optimal reactive power control strategy of pv inverters,” IEEE T. Ind. Electron., vol. 58, no. 10, pp. 4549 –4558, oct. 2011.
  • [13] K. Bhattacharya and J. Zhong, “Reactive power as an ancillary service,” IEEE T. Power. Syst., vol. 16, no. 2, pp. 294 –300, may 2001.
  • [14] E. Serban and H. Serban, “A control strategy for a distributed power generation microgrid application with voltage- and current-controlled source converter,” IEEE T. Power. Electr., vol. 25, no. 12, pp. 2981 –2992, dec. 2010.
  • [15] J. Rocabert, G. Azevedo, A. Luna, J. Guerrero, J. Candela, and P. Rodriguez, “Intelligent connection agent for three-phase grid-connected microgrids,” IEEE T. Power. Electr., vol. 26, no. 10, pp. 2993 –3005, oct. 2011.
  • [16] K. De Brabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen, R. Belmans, and K. Leuven, “A voltage and frequency droop control method for parallel inverters,” in Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, vol. 4, 2004, pp. 2501 – 2507 Vol.4.
  • [17] J. Guerrero, J. Vasquez, J. Matas, L. de Vicuna, and M. Castilla, “Hierarchical control of droop-controlled ac and dc microgrids; a general approach toward standardization,” IEEE T. Ind. Electron., vol. 58, no. 1, pp. 158 –172, jan. 2011.
  • [18] J. H. R. Enslin and P. J. M. Heskes, “Harmonic interaction between a large number of distributed power inverters and the distribution network,” IEEE Trans. Power Electronics, pp. 1586–1593, 2004.
  • [19] J. De La Ree, V. Centeno, J. Thorp, and A. Phadke, “Synchronized phasor measurement applications in power systems,” IEEE T. Smart Grids, vol. 1, no. 1, pp. 20 –27, june 2010.
  • [20] S. Galli, A. Scaglione, and Z. Wang, “For the grid and through the grid: The role of power line communications in the smart grid,” Proc. IEEE, vol. 99, no. 6, pp. 998 –1027, june 2011.
  • [21] D. Dardari, A. Conti, U. Ferner, A. Giorgetti, and M. Win, “Ranging with ultrawide bandwidth signals in multipath environments,” Proc. IEEE, vol. 97, no. 2, pp. 404 –426, feb. 2009.
  • [22] C. Smythe, “Iso 8802/5 token ring local-area networks,” Electronics Communication Engineering Journal, vol. 11, no. 4, pp. 195 –207, aug 1999.
  • [23] L. Asiminoaei, R. Teodorescu, F. Blaabjerg, and U. Borup, “A Digital Controlled PV-Inverter With Grid Impedance Estimation for ENS Detection”, IEEE Trans. on Power Electronics, pp. 1480-1490, 2005.
  • [24] M. Ciobotaru, R. Teodorescu and F. Blaabjerg, “On-line grid impedance estimation based on harmonic injection for gridconnected PV inverter”, 2007 IEEE Int. Symp. on Industrial Electronics, pp. 2437-2442.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e0eb8274-0f71-4f7d-83e9-6a3a19ff9d47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.