Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | Vol. 70, no 5 | 2033--2044
Tytuł artykułu

Delineation of major subsurface structural features and source depth locations using 3-D Euler deconvolution of gravity data at north-eastern part of India

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The convergence of different major tectonic plates, namely the Eurasian, Indian and Sunda plates, may be the cause of the Assam Syntaxis due to the tectonic interaction between the Himalayan and the Indo-Burman ranges. The study covers the area between latitude 23°–28° N and longitude 88°–96° E and has experienced various types of earthquakes in the recent past. Seismic activity occurs in and around the Shillong Plateau, Mikir Hills, Arakan-Yoma Fold Belt, Naga Hills, parts of the Bengal Basin, lower and upper Brahmaputra valley, and the Mishmi Hills of the Himalayan foothills. Still, part of the study area is extremely unreachable and a limited number of thrust-faults have been identified from field geological studies and GIS maps received from the various sources. In this paper, an attempt has been made to study the delineation of thrust-fault locations using available ground gravity data of northeastern India with the help of a three-dimensional Euler deconvolution technique using the least squares method. Gravity data suggest an undulating nature throughout the area; however, high gravity values are observed at the Bengal Basin and Shillong Plateau, whereas lower gravity values are observed at Brahmaputra and Assam valley, Indo-Burman Range and Molasse Basin. The Shillong Plateau has high gravity with high elevation, whereas the Bengal Basin has high gravity with low elevation. This means that certain tectonic resettlement takes place in the Shillong Plateau, which causes the higher gravity anomaly. The use of Euler deconvolution with the help of a structural index plays a major role in gaining a better understanding of thrust-fault delineation and provides a mappable solution in this area. In this study, source depth estimation using 3- dimensional Euler deconvolution has been carried out by applying a range of structural index and window sizes. The different combinations of structural index and window size during the Euler deconvolution process generates several solutions including some unwanted spurious noise. To remove this noise, unrealistic solutions are discarded by applying filtering criteria to obtain the desired acceptable depth. The results derived using 3-dimensional Euler deconvolution correlate well with the previous finding of thrust-fault delineation. The present study validates the thrust-fault boundaries as well as providing additional thrust-fault settings in the complex tectonic area. The gravity data interpretation appears to offer a reasonable approach for source depth estimation and structural boundary identification.
Wydawca

Czasopismo
Rocznik
Strony
2033--2044
Opis fizyczny
Bibliogr. 65 poz.
Twórcy
  • Geophysics Department, Oil India Limited, Duliajan, Assam 786602, India, gk_ghosh@yahoo.com
Bibliografia
  • 1. Alam MM, Currey JR, Chowdhury MLR, Gani MR (2003) An overview of the sedimentary geology of the Bengal Basin relation to the regional tectonic framework and basin-fll history. Sediment Geol 155:179–208. https://doi.org/10.1016/S0037-0738(02)00180-X
  • 2. Ambraseys N, Douglas J (2004) Magnitude calibration of north Indian earthquakes. Geophys J Int 159:165–206. https://doi.org/10.1111/j.1365-246X.2004.02323.x
  • 3. Angelier J, Barua S (2009) Seismotectonics in Northeast India: a stress analysis of focal mechanism solutions of earthquakes and its kinematic implications. Geophys J Int 178(1):303–326. https://doi.org/10.1111/j.1365-246X.2009.04107.x
  • 4. Awasthi N, Ray JS, Singh AK, Band ST, Rai VK (2014) Provenance of the late quaternary sediments in the Andaman Sea: implications for monsoon variability and ocean circulation. Geochem Geophys Geosyst 15:3890–3906. https://doi.org/10.1002/2014GC005462
  • 5. Bansal BK, Verma M (2013) Science and technology based earthquake risk reduction strategies: the Indian Scenario. Acta Geophys 61(4):808–821. https://doi.org/10.2478/s11600-013-0105-5
  • 6. Bilham R, England P (2001) Plateau ‘pop up’ in the great, 1897, Assam earthquake. Nature 410:806–809. https://doi.org/10.1038/35071057
  • 7. Biswas S, Grasemann B (2005) Quantitative morphotectonics of the southern Shillong Plateau (Bangladesh/India). Aust J Earth Sci 97:82–93
  • 8. Chandra U (1975) Seismicity, earthquake mechanisms, and tectonics of Burma, 200–280N. Geophys J R Astron Soc 40:367-381
  • 9. Coleman TF, Li Y (1996) An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J on Optimization 6:418–445
  • 10. Cooper GRJ (2002) An improved algorithm for the Euler deconvolution of potential field data. Lead Edge 21(12):1197–1198. https://doi.org/10.1190/1.1536132
  • 11. Devi NR, Sarma KP (2010) Strain analysis and stratigraphic status of Nongkhya, Sumer and Mawmaram conglomerates of Shillong basin, Meghalaya, India. J Earth Syst Sci 119:161–174
  • 12. Dewangan P, Ramprasad T, Ramana MV, Desa M, Shailaja B (2007) Automatic interpretation of magnetic data using Euler Deconvolution with nonlinear background. Pure Appl Geophys 164(11):2359–2372. https://doi.org/10.1007/s00024-007-0264-x
  • 13. Evans P (1964) The tectonic framework of Assam. J Geol Soc India 5:80–96
  • 14. Fedi M (2007) DEXP: a fast method to determine the depth and the structural index of potential fields sources. Geophysics 72(1):l1–l11. https://doi.org/10.1190/1.2399452
  • 15. FitzGerald D, Reid AB, McInerney P (2004) New discrimination techniques for Euler deconvolution. Comput Geosci 30(5):461–469. https://doi.org/10.1016/j.cageo.2004.03.006
  • 16. Gerovska D, Araúzo-Bravo MJ (2003) Automatic interpretation of magnetic data based on Euler deconvolution with unprescribed structural index. Comput Geosci 29:949–960
  • 17. Gerovska D, Stavrev Y, Arauzo-Bravo MJ (2005) Finite-difference Euler deconvolution algorithm applied to the interpretation of magnetic data from northern Bulgaria, pure app. Geophys 162:591–608
  • 18. Ghosh GK (2015) Interpretation of gravity anomaly and crustal thickness mapping of Narmada-Son lineament in central India. J Geol Soc India 86(3):263–274. https://doi.org/10.1007/s12594-014-0077-3
  • 19. Ghosh GK (2016) Interpretation of gravity data using 3D Euler deconvolution, tilt angle, horizontal tilt angle and source edge approximation of the North-West Himalaya. Acta Geophys 64(4):1112–1138. https://doi.org/10.1515/acgeo-2016-0042
  • 20. Ghosh GK (2018) Automatic Delineation of structural boundaries using curvature analysis of bouguer gravity data in parts of Northwest Himalaya. J Geol Soc India 91(5):589–595. https://doi.org/10.1007/s12594-018-0909-7
  • 21. Ghosh GK (2019) Interpretation of gravity anomaly to delineate thrust faults locations at the northeastern part of India and its adjacent areas using source edge detection technique, tilt derivative and Cos(θ) analysis. Acta Geophys 67:1277–1295. https://doi.org/10.1007/s11600-019-00345-8
  • 22. Ghosh GK (2022) Study of gravity signature across the floating basement of Bundelkhand Granite using 3D-Euler deconvolution, source edge detection technique and various gravity gradient analyses. Acta Geophys, 1-19, https://doi.org/10.1007/s11600-022-00798-4
  • 23. Ghosh GK, Singh CL (2014) Spectral analysis and Euler deconvolution technique of gravity data to decipher the basement depth in the Dehradun-Badrinath area. J Geol Soc India 83(5):501–512. https://doi.org/10.1007/s12594-014-0077-3
  • 24. Ghosh GK, Dasgupta R (2013) Edge detection and depth estimation using 3D Euler deconvolution, Tilt angle derivative and TDX derivative using magnetic data of thrust fold belt area of Mizoram, Society of Petroleum Geophysicists,. In: 10th biennial international conference and exposition.
  • 25. Ghosh GK, Dasgupta R, Reddy BJ, Singh SN (2015) Gravity data interpretation across the Brahmaputra Thrust and Dauki fault in the north-eastern India. J Geophys 36:31–38
  • 26. Ghosh GK, Manda KL, Rao GVJ (2017) Estimation of geological boundary and source depth locations using seismic, gravity, magnetic and geochemical data in Assam-Arakan Basin in Mizoram State of N–E India, GEOHORIZONS July, pp1–6
  • 27. Harijan N, Sen AK, Sarkar S, Das JD, Kanungo DP (2003) Geo- morphotectonics around the Sung valley carbonatite complex, Shillong plateau, NE India: remote sensing and GIS approach. J Geol Soc India 62(1):103–109
  • 28. Hood P (1965) Gradient measurements in aeromagnetic surveying. Geophysics 30(5):891–902. https://doi.org/10.1190/1.1439666
  • 29. Hsu SK (2002) Imaging magnetic sources using Euler’s equation. Geophys Prosp 50:15–25
  • 30. Kayal JR (2001) Microearthquake activity in some parts of the Himalaya and the tectonic model. Tectonophysics 339:331–351
  • 31. Kayal JR, De R (1991) Microseismicity and tectonics in northeast India. Bull Seismol Soc Am 77:1718–1727
  • 32. Kayal JR, Arefev SS, Barua S, Hazarika D, Gogoi N, Kumar A, Chowdhury SN, Kalita S (2006) Shillong plateau earthquakes in northeast India region: complex tectonic model. Curr Sci 91:109–114
  • 33. Kopal Z (1961) Numerical analysis .Chapman and Hall Ltd., London, pp 551– 553
  • 34. McClay KR, Bonora M (2001) Analog models of restraining stopovers in strike–slip fault systems. Am Assoc Pet Geol Bull 85:233–260
  • 35. Melo FF, Barbosa VCF, Uieda L, Oliveira VC Jr, Silva JBC (2013) Estimating the nature and the horizontal and vertical positions of 3D magnetic sources using Euler deconvolution. Geophysics 78(6):J87–J98. https://doi.org/10.1190/geo2012-0515.1
  • 36. Menke W (1989) Geophysical data analysis: Discrete inverse theory. Academic Press Inc.
  • 37. Mikhailov V, Galdeano M, Gvishiani A, Agayan S, Bogoutdinov S, Graeva E, Sailhac P (2003) Application of artificial intelligence for Euler solutions clustering. Geophysics 68(1):168–180. https://doi.org/10.1190/1.1543204
  • 38. Milligan PR, Petkovic P, Drummond BJ (2003) Potential-field datasets for the Australian region: their significance in mapping basement architecture. In: Hillis RR, Müller RD (eds) Evolution and dynamics of the Australian Plate. Geological Society of America. https://doi.org/10.1130/0-8137-2372-8.129
  • 39. Mishra UK, Sen S (2001) Dinosaur bones from Meghalaya. Curr Sci 80:1053–1056
  • 40. Mitra SK (1998) Structure, sulphide mineralization and age of the Shillong group of rocks, Meghalaya. In: Krishnan SK (eds) Centenary commemorative national seminar. 1–2 November, 1998, Calcutta, pp 118–119 (Abstract)
  • 41. Mushayandebvu MF, Lesur V, Reid AB, Fairhead JD (2004) Grid Euler deconvolution with constraints for 2D structures. Geophysics 69(2):489–496. https://doi.org/10.1190/1.1707069
  • 42. Nabighian MN, Hansen RO (2001) Unification of Euler and Werner deconvolution in three dimensions via the generalized Hilbert transform. Geophysics 66(6):1805–1810. https://doi.org/10.1190/1.1487122
  • 43. Nandy DR, Dasgupta S (1991) Seismotectonic domains of north-eastern India and adjacent areas. Phys Chem Earth 1:371–384
  • 44. Oldham RD (1899) Report of the great earthquake of 12th June. Mem Geol Surv India 46:257–276
  • 45. Oldham T (1883) The Cachar earthquake of 10 January 1869. The Geological Survey of India Memoir, pp 1–88
  • 46. Pilkington M, Abdoh A, Cowan DR (1995) Pre-Mesozoic structure of the Inner Moray Firth Basin: constraints from gravity and magnetic data. First Break 13(7):291–300. https://doi.org/10.3997/1365-2397.1995015
  • 47. Rajendran CP, Rajendran K, Daurah BP, Earnest A (2004) Interpreting the style of faulting and paleoseismicity associated with the Shillong, northeast India, and earthquake: implication for regional tectonism. Tectonics. https://doi.org/10.1029/2003tc001605
  • 48. Rajesekhar RP, Mishra DC (2008) Crustal structure of Bengal Basin and Shillong Plateau: extension of Eastern Ghat and Saatpura Mobile Belts to Himalayan fronts and seismotectonics. Gondwana Res. https://doi.org/10.1016/j.gr.2007.10.009
  • 49. Rao NP, Kumar P, Tsukuda T, Ramesh DS (2006) The devastating Muzafarbad earthquake of 8 October 2005: new insights into Himalayan seismicity and tectonics. Gondwana Res 9:365–378
  • 50. Reid AB, Thurston JB (2014) The structural index in gravity and magnetic interpretation: errors, uses, and abuses. Geophysics 79(4):J61–J66
  • 51. Reid AB, Allsop JM, Granser H, Millet AJ, Somerton IW (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55:80–91
  • 52. Reid AB, Ebbing JO, Susan SJ (2014) Avoidable Euler Errors - the use and abuse of Euler deconvolution applied to potential fields. Geophys Prospect 62(5):1162–1168. https://doi.org/10.1111/1365-2478.12119
  • 53. Reid AB, FitzGerald D, McInerny P (2003) Euler deconvolution of gravity data. In: Proc. 73rd SEG Annual International Meeting, pp 26–31 October 2003, Dallas, USA, SEG-2003-0580
  • 54. USGS Report (2015) The Himalayas: two continents collide. https://pubs.usgs.gov/publications/text/himalaya.html
  • 55. Robinson RAJ, Brezina CA, Parrish RR, Horstwood MSA, Oo NW, Bird MI, Thein M, Walters AS, Oliver GJH, Zaw K (2014) Large rivers and orogens: The evolution of the Yarlung Tsangpo–Irrawaddy system and the eastern Himalayan syntaxis. Gondwana Res 26(1):112–121. https://doi.org/10.1016/j.gr.2013.07.002
  • 56. Schellart WP, Nieuwland DA (2003) 3D evolution of a pop-up structure above a double basement strike-slip fault: some insights from analogue modelling. Geol Soc 212(1):169–179. https://doi.org/10.1144/GSL.SP.2003.212.01.11
  • 57. Seno T, Rehman HU (2011) When and why the continental crust is subducted: examples of Hindu Kush and Burma. Gondwana Res 19:327–333
  • 58. Silva JBC, Barbosa VCF (2003) 3D Euler deconvolution: theoretical basis for automatically selecting good solutions. Geophysics 68(6):1962–1968. https://doi.org/10.1190/1.1635050
  • 59. Smith RS, Thurston JB, Dai T, MacLeod In (1998) iSPI-The improved source parameter imaging method. Geophys Prospect 46(2):141–151. https://doi.org/10.1046/j.1365-2478.1998.00084.x
  • 60. Stavrev PY (1997) Euler deconvolution using differential similarity transformations of gravity and magnetic anomalies. Geophys Prospect 45(2):207–246. https://doi.org/10.1046/j.1365-2478.1997.00331.x
  • 61. Tapponnier P, Peltzer G, Le Dain AY, Armijo R, Cobbold P (1982) Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology 10:611–616
  • 62. Thompson DT (1982) EULDPH: a new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47:31–37
  • 63. Verma RK, Mukhopadhay M (1977) An analysis of the gravity field in north-eastern India. Tectonophysics 42:283–317
  • 64. Wikipedia (2019) Indian Plate (after https://en.wikipedia.org/wiki/Indian_Plate)
  • 65. Yaghoobian A, Boustead GA, Dobush TM (1993) Object delineation using Euler’s homogeneity equation: location and depth determination of buried ferro-metallic bodies. In: Proc. symp. on application of geophysics to engineering and environmental problems 1993, San, USA, pp 613–632 Diego, https://doi.org/10.4133/1.2922042.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e0c6b8a8-4732-4255-8fd1-0a46857f0a71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.