Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 45, no 1 | 23--31
Tytuł artykułu

Numerical assessment of solar air heater performance having a broken arc and broken S-shaped ribs as roughness

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research article aims to provide a detailed numerical study of the multifaceted impact of S-shaped and broken arc roughness on solar air heaters. Therefore, a strong comparison was made between the modified heaters and smooth heaters for Reynolds numbers ranging from 2 00022 000. Also, the impact of two parameters, i.e. pitch and gap was analyzed to optimize the performance of the heater. The gap varies from 0.3 mm to 0.9 mm in both types of ribs with a step size of 0.2 mm. Afterwards, the pitch distance between both types of roughness was varied from 15 mm to 25 mm in the step size of 5 mm. Notably, it has been observed that among all the considered configurations, the gap length of 0.9 mm and pitch length of 25 mm have shown significant improvements in heat transfer characteristics. The specific combination of the gap of 0.9 mm and pitch of 25 mm has demonstrated better heat transfer capabilities at the expense of an increased friction factor. Lastly, the thermal performance factor of the systems was analyzed and reported. It was reported that the pitch length of 25 mm and gap length of 0.9 mm have shown a maximum thermal performance factor value from 2.9 to 3.3, while the pitch length of 25 mm and gap length of 0.3 mm have depicted the lowest thermal performance factor value. In terms of the overall performance, i.e. the thermal performance factor, the combination with a gap of 0.9 mm and pitch of 25 mm has shown the best performance, while a gap of 0.3 mm and pitch of 25 mm has yielded the worst performance.
Wydawca

Rocznik
Strony
23--31
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
  • Department of Thermal Engineering, Faculty of Technology, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun, Uttarakhand-248007, India
  • Department of Thermal Engineering, Faculty of Technology, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun, Uttarakhand-248007, India
  • Department of Mechanical Engineering, School of Engineering and Technology, K. R. Mangalam University, Gurgaon, Haryana-122103, India, prabhakar.bhandari40@gmail.com
  • Department of Mechanical Engineering, Graphic Era Deemed to University, Clement Town, Dehradun, Uttarakhand-248002, India
  • Department of Mechanical Engineering, Graphic Era Deemed to University, Clement Town, Dehradun, Uttarakhand-248002, India
Bibliografia
  • [1] Habib, K., & Wenzel, H. (2014). Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling. Journal of Cleaner Production, 84, 348-359. doi: 10.1016/j.jclepro.2014.04.035
  • [2] Kumar, A., Bhandari, P., & Rawat, K. (2021). Numerical Simulation of Solar Air Heater using Paraffin Wax-Aluminum Compound as Phase Changing Material. Aptisi Transactions on Technopreneurship, 3(2), 164–170. doi: 10.34306/att.v3i2.199
  • [3] Varshney, L., Bhandari, P., & Bisht, V.S. (2014). Performance Evaluation of Hybrid Solar Water Heating System Using Wire Screen Packed Solar Air Heater. International Journal of Engineering Research and Application, 311–316.
  • [4] Bhandari, P., Varshney, L., & Bisht, V.S. (2018). Numerical analysis of hybrid solar water heating system using wire screen packed solar air heater. 1st International Conference on New Frontiers in Engineering, Science and Technology, 1, 415–422, 8-12 January, New Delhi, India.
  • [5] Jani, D.K.S. (2023). Design and performance analysis of a solar air (SA) heater with phase change material (PCM) heat storage for residential applications. International Journal of Innovative Research in Engineering and Management, 10(4), 106-113. doi:10.55524/ijirem.2023.10.4.13
  • [6] Bisht, A.S., Bisht, V.S., Bhandari, P., Rawat, K.S., Alam, T., & Blecich, P. (2023). The use of a vortex generator for the efficient cooling of lithium-ion batteries in hybrid electric vehicles. Processes, 11, 500. doi: 10.3390/pr11020500
  • [7] Thapa, R.K., Bisht, V.S., Rawat, K.S., & Bhandari, P. (2022) Computational analysis of automobile radiator roughened with rib roughness. Journal of Heat and Mass Transfer Research, 9(2), 209–218. doi: 10.22075/jhmtr.2023.27617.1382
  • [8] Bhandari, P., Singh, J., Kumar, K., & Ranakoti, L. (2022). A review on active techniques in microchannel heat sink for miniaturisation problem in electronic industry. Acta Innovations, 45,45–54. doi: 10.32933/ActaInnovations.45.4
  • [9] Singh, B.P., Bisht, V.S., Bhandari, P., & Rawat, K.S. (2021). Thermo-fluidic modelling of a heat exchanger tube with conical shaped insert having protrusion and dimple roughness. Aptisi Transactions on Technopreneurship, 3(2), 13–29. doi: 10.34306/att.v3i2.200
  • [10] Thapa, R.K., Bisht, V.S., Bhandari, P., & Rawat, K.S. (2022). Numerical study of car radiator using dimple roughness and nanofluid. Archives of Thermodynamics, 43(3), 125–140. doi:10.24425/ather.2022.143175
  • [11] Singh, B.P., Bisht, V.S., & Bhandari, P. (2021). Numerical Study of Heat Exchanger Having Protrusion and Dimple Roughened Conical Ring Inserts. In Advances in Fluid and Thermal Engineering (pp. 151–161). Springer Singapore. doi: 10.1007/978-981-16-0159-0_14
  • [12] Bisht, V.S., Patil, A.K., & Gupta, A. (2018). Review and performance evaluation of roughened solar air heaters. Renewable and Sustainable Energy Reviews, 81, 954–977. doi: 10.1016/j.rser.2017.08.036
  • [13] Alam, T., & Kim, M.H. (2016). Numerical study on thermal hydraulic performance improvement in solar air heater duct with semi ellipse shaped obstacles. Energy, 112, 588–598. doi:10.1016/j.energy.2016.06.105
  • [14] Chaube, A., Sahoo, P.K., & Solanki, S.C. (2006). Effect of roughness shape on heat transfer and flow friction characteristics of solar air heater with roughened absorber plate. WIT Transactions on Engineering Sciences, 53, 43–51. doi: 10.2495/HT060051
  • [15] Lanjewar, A., Bhagoria, J.L., & Sarviya, R.M. (2011). Experimental study of augmented heat transfer and friction in solar air heater with different orientations of W-rib roughness, Experimental thermal and fluid science, 35, 986995. doi: 10.1016/j.expthermflusci.2011.01.019
  • [16] Semalty, A., Bisht, V.S., Bhandari, P., Rawat, K., Singh, J., Kumar, K., & Dixit, A.K. (2022). Thermodynamic investigation on solar air heater having roughness as multiple broken arc and circular protrusion. Materials Today: Proceedings, 69(2), 181–186.doi: 10.1016/j.matpr.2022.08.336
  • [17] Bohra, J., Bisht, V.S., Bhandari, P., Rawat, K.S., Singh, J., Kumar, K., & Rawat, B. (2022). Effect of variable blockage height ratio on performance for solar air heater roughened with 45° Zshaped baffles. Materials Today: Proceedings, 69(2), 153–157.doi: 10.1016/j.matpr.2022.08.279
  • [18] Ghildyal. A., Bisht V.S., Bhandari, P., & Rawat K.S. (2023). Effect of D-shaped, reverse D-shaped and U-shaped turbulators in solar air heater on thermo-hydraulic performance. Archives of Thermodynamics, 44(2), 3-20. doi: 10.24425/ather.2023.146556
  • [19] Singh, J., Bisht, V.S., Bhandari, P., Kumar, K., Singh, J., Alam, T., Dixit, S., Singh, S., & Khusnutdinov, R. (2023). Computational parametric investigation of solar air heater with dimple roughness in S-shaped pattern. International Journal on Interactive Design and Manufacturing (IJIDeM). doi: 10.1007/s12008-023-01392-8
  • [20] Asghar, A., Lund, L.A., Shah, Z., Vrinceanu, N., Deebani, W., & Shutaywi, M. (2022). Effect of thermal radiation on three-dimensional magnetized rotating flow of a hybrid nanofluid. Nanomaterials, 12(9), 1566. doi: 10.3390/nano12091566
  • [21] Asghar, A., Ying, T.Y., & Zaimi, K. (2022). Two-dimensional mixed convection and radiative Al2O3-Cu/H2O hybrid nanofluid flow over a vertical exponentially shrinking sheet with partial slip conditions. CFD Letters, 14(3), 22-38. doi: 10.37934/cfdl.14.3.2238
  • [22] Asghar, A., Vrinceanu, N., Ying, T.Y., Lund, L.A., Shah, Z., & Tirth, V. (2023). Dual solutions of convective rotating flow of three-dimensional hybrid nanofluid across the linear stretching/shrinking sheet. Alexandria Engineering Journal, 75(3), 297-312. doi: 10.1016/j.aej.2023.05.089
  • [23] Rasool, G., Xinhua, W., Lund, L.A., Yashkun, U., Wakif, A., & Asghar, A. (2023). Dual solutions of unsteady flow of copperalumina/water based hybrid nanofluid with acute magnetic force and slip condition. Heliyon, 9, 22737. doi: 10.1016/j.heliyon.2023.e22737
  • [24] Teh, Y. Y., & Ashgar, A. (2021). Three dimensional MHD hybrid nanofluid Flow with rotating stretching/shrinking sheet and Joule heating. CFD Letters, 13(8), 1-19. doi: 10.37934/cfdl.13.8.119
  • [25] Lund, L. A., Asghar, A., Rasool, G., & Yashkun, U. (2023). Magnetized casson SA-hybrid nanofluid flow over a permeable moving surface with thermal radiation and Joule heating effect. Case Studies in Thermal Engineering, 50, 103510. doi: 10.1016/j.csite.2023.103510
  • [26] Asghar, A., Chandio, A.F., Shah, Z., Vrinceanu, N., Deebani, W., Shutaywi, M., & Lund, LA. (2023). Magnetized mixed convection hybrid nanofluid with effect of heat generation/absorption and velocity slip condition. Heliyon, 9(2), 13189. doi: 10.1016/j.heliyon.2023.e13189
  • [27] Asghar, A., Ying, T.Y., & Zaimi, K. (2022), Two-dimensional magnetized mixed convection hybrid nanofluid over a vertical exponentially shrinking sheet by thermal radiation, joule heating, velocity and thermal slip conditions. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 95(2), 159-179. doi: 10.37934/arfmts.95.2.159179
  • [28] Saxena, A., & El-Sebaii, A.A. (2015). A thermodynamic review of solar air heaters. Renewable and Sustainable Energy Reviews, 43, 863-890. doi: 10.1016/j.rser.2014.11.059
  • [29] Kumar, S., & Verma, S.K. (2020). Three-dimensional simulation and experimental validation of solar air heater having sinusoidal rib. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-19. doi: 10.1080/15567036.2020.1818007
  • [30] Chamoli, S., & Thakur, N.S. (2016) Correlations for solar air heater duct with V-shaped perforated baffles as roughness elements on absorber plate. International Journal of Sustainable Energy, 35(1), 1-20. doi: 10.1080/14786451.2013.857318
  • [31] Alam, T., & Kim, M.K. (2017). Heat transfer enhancement in solar air heater duct with conical protrusion roughness ribs. Applied Thermal Engineering, 126, 458-469. doi: 10.1016/j.applthermaleng.2017.07.181
  • [32] Bhandari, P., Rawat, K.S., Prajapati, Y.K., Padalia, D., Ranakoti, L., & Singh, T. (2024). A review on design alteration in microchannel heat sink for augmented thermohydraulic performance. Ain Shams Engineering Journal, 15(2), 102417). doi.: 10.1016/j.asej.2023.102417
  • [33] Bhandari, P., Padalia, D., Ranakoti, L., Khargotra, R., András, K., & Singh, T. (2023). Thermo-hydraulic investigation of open micro prism pin fin heat sink having varying prism sides. Alexandria Engineering Journal, 69, 457–468. doi: 10.1016/j.aej.2023.02.016
  • [34] Bhandari, P. (2022). Numerical investigations on the effect of multi-dimensional stepness in open micro pin fin heat sink using single phase liquid fluid flow. International Communications in Heat and Mass Transfer, 138, 106392. doi: 10.1016/j.icheatmasstransfer.2022.106392
  • [35] Bhandari, P., Prajapati, Y.K., & Uniyal, A. (2022). Influence of three dimensionality effects on thermal hydraulic performance for stepped micro pin fin heat sink. Meccanica, 58(11), 2113-2129. doi: 10.1007/s11012-022-01534-4
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e0b82bad-bd95-4bdf-b8e0-ba0a25a3d51b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.