Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 1, no. 1 | 575--582
Tytuł artykułu

Climate Change Impacts on Built Environment

Treść / Zawartość
Warianty tytułu
PL
Wpływ zmian klimatu na środowisko zabudowane
Języki publikacji
EN
Abstrakty
EN
We are currently in the period of an intensive climate change, resulting from changes in the heat balance of the earth’s surface and causing an increase in the temperature of the lower troposphere levels. According to the latest IPCC report of 2021, it is human activity that has indisputably caused the increase in atmospheric concentrations of greenhouse gases, responsible for this process. The consequences of climate change under Polish conditions, apart from a rise in temperature especially in the spring and winter months, are also changes in the amount and distribution of precipitation totals. A slight increase in precipitation totals is observed, however heavy rainfall is significantly more frequent, interspersed with periods of droughts and heatwaves. Ground frost-free periods are prolonged, and a negative trend in the duration and thickness of snow cover is recorded in most parts of the country. Although extreme phenomena occurring in Poland are permanently inscribed in its climatic conditions, the threat of strong winds has been increasing in recent years, and the intense precipitation that often accompanies them is the cause of peak discharges and flooding. Forecasts for progressive climate change are not optimistic, either on a global scale or for the country in question. The article examines the impact of climate change on the design, construction and maintenance of engineering structures globally and for Poland. Changes in design standards, selected examples of disasters and solutions to adapt and build resilience to climate change have been analysed. For most building disasters, climatic factors were the direct cause of the disaster, although in the course of the analysis it has usually turned out that the disasters exposed human errors in the design, construction and, to a lesser extent, the improper maintenance of engineering structures. However, there is an increasing number of new approaches to creating a climate change resilient built environment, including the latest one, which proposes to use the grey infrastructure of cities to build resilience to climate change.
Wydawca

Rocznik
Strony
575--582
Opis fizyczny
Bibliogr. 50 poz., zdj.
Twórcy
  • Wrocław University of Life and Environmental Sciences, Department of Civil Engineering, 24 Grunwaldzki Sq., 50- 363 Wrocław, Poland, jolanta.dabrowska@upwr.edu.pl
  • Wrocław University of Life and Environmental Sciences, Department of Civil Engineering, 24 Grunwaldzki Sq., 50- 363 Wrocław, Poland, anna.rawska-skotniczny@upwr.edu.pl
  • Wrocław University of Life and Environmental Sciences, Department of Civil Engineering, 24 Grunwaldzki Sq., 50- 363 Wrocław, Poland, maciej.kazmierowski@upwr.edu.pl
  • Wrocław University of Life and Environmental Sciences, Department of Environmental Protection and Development, 24 Grunwaldzki Sq., 50-363 Wrocław, Poland, malgorzata.biniak-pierog@upwr.edu.pl
Bibliografia
  • 1. T. Tanaka, K. Kiyohara, Y. Tachikawa, “Comparison of fluvial and pluvial flood risk curves in urban cities derived from a large ensemble climate simulation dataset: A case study in Nagoya, Japan”, J. Hydrol. 584, 124706 (2020).
  • 2. L.M. Abadie, L.P. Jackson, E. Sainz de Murieta, S. Jevrejeva, I. Galarraga, “Comparing urban coastal flood risk in 136 cities under two alternative sea-level projections: RCP 8.5 and an expert opinion-based high-end scenario”, Ocean Coast. Manag. 193, 105249 (2020).
  • 3. J.E. Norris, A. Stokes, S.B. Mickovski, E. Cammeraat, R. van Beek, B.C. Nicoll, A. Achim, Slope Stability and Erosion Control: Ecotechnological Solutions (Springer, Dordrecht, Holland, 2008), pp. 1-288.
  • 4. D. Anelli, F. Tajani, R. Ranieri, “Urban resilience against natural disasters: Mapping the risk with an innovative indicators-based assessment approach”, J. Clean. Prod. 371, 133496 (2022).
  • 5. Z. Zięba, J. Dąbrowska, M. Marschalko, J. Pinto, M. Mrówczyńska, A. Leśniak, A. Petrovski, J.K. Kazak, “Built environment challenges due to climate change”, IOP Conf. Ser. Earth Environ. Sci. 609, 012061 (2020).
  • 6. M. Mosoarca, A.I. Keller, C. Petrus, A. Racolta, “Failure analysis of historical buildings due to climate change”, Eng. Fail. Anal. 82, 666–680 (2017).
  • 7. V. Mishra, A. Sadhu, “Towards the effect of climate change in structural loads of urban infrastructure: A review”, Sustain. Cities Soc. 89, 104352 (2023).
  • 8. A. Nasr, E. Kjellström, I. Björnsson, D. Honfi, O.L. Ivanov, J. Johansson, “Bridges in a changing climate: a study of the potential impacts of climate change on bridges and their possible adaptations”, Struct. Infrastruct. Eng. 16, 738–749 (2020).
  • 9. P. Croce, P. Formichi, F. Landi, F. Marsili, “Climate change: Impact on snow loads on structures”, Cold Reg. Sci. Technol. 150, 35–50 (2018).
  • 10. I. Tylek, K. Kuchta, A. Rawska-Skotniczny, “Human errors in the design and execution of steel structures-a case study”, Struct. Eng. Int. J. Int. Assoc. Bridg. Struct. Eng. 27, 370–379 (2017).
  • 11. H. Hao, K. Bi, W. Chen, T.M. Pham, J. Li, “Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures”, Eng. Struct. 277, 115477 (2023).
  • 12. S.B. Guerreiro, R.J. Dawson, C. Kilsby, E. Lewis, A. Ford, “Future heat-waves, droughts and floods in 571 European cities”, Environ. Res. Lett. 13, 034009 (2018).
  • 13. J.S. Tan, K. Elbaz, Z.F. Wang, J.S. Shen, J. Chen, “Lessons Learnt from Bridge Collapse: A View of Sustainable Management”, Sustain. 12, 1205 (2020).
  • 14. J. Fluixá-Sanmartín, L. Altarejos-García, A. Morales-Torres, I. Escuder-Bueno, “Review article: Climate change impacts on dam safety”, Nat. Hazards Earth Syst. Sci. 18, 2471–2488 (2018).
  • 15. K.E. Haslett, J.F. Knott, A.M.K. Stoner, J.E. Sias, E. V. Dave, J.M. Jacobs, W. Mo, K. Hayhoe, “Climate change impacts on flexible pavement design and rehabilitation practices”, J. Transp. Eng. Part A Syst. 22, 2098–2112 (2021).
  • 16. S. Szewrański, J. Chruściński, J. Kazak, M. Świąder, K. Tokarczyk-Dorociak, R. Żmuda, “Pluvial Flood Risk Assessment Tool (PFRA) for Rainwater Management and Adaptation to Climate Change in Newly Urbanised Areas”, Water 10, 386 (2018).
  • 17. X. Xiao, E. Seekamp, J. Lu, M. Eaton, M.P. van der Burg, “Optimizing preservation for multiple types of historic structures under climate change”, Landsc. Urban Plan. 214, 104165 (2021).
  • 18. M. Landauer, S. Juhola, J. Klein, “The role of scale in integrating climate change adaptation and mitigation in cities”, J. Environ. Plan. Manag. 62, 741–765 (2019).
  • 19. A. Hurlimann, S. Moosavi, G.R. Browne, “Urban planning policy must do more to integrate climate change adaptation and mitigation actions”, Land Use Policy 101, 105188 (2021).
  • 20. B.J. He, J. Zhu, D.X. Zhao, Z.H. Gou, J. Da Qi, J. Wang, “Co-benefits approach: Opportunities for implementing sponge city and urban heat island mitigation”, Land Use Policy 86, 147–157 (2019).
  • 21. J.G. Carter, G. Cavan, A. Connelly, S. Guy, J. Handley, A. Kazmierczak, “Climate change and the city: Building capacity for urban adaptation”, Prog. Plann. 95, 1–66 (2015).
  • 22. I.M. Voskamp, C. De Luca, M. Budding Polo-Ballinas, H. Hulsman, R. Brolsma, A. Pagano, E.L. Gunn, L. Kapetas, B. Mayor, “Nature-Based Solutions Tools for Planning Urban Climate Adaptation: State of the Art”, Sustain. 13, 6381 (2021).
  • 23. J. Da Qi, B.J. He, M. Wang, J. Zhu, W.C. Fu, “Do grey infrastructures always elevate urban temperature? No, utilizing grey infrastructures to mitigate urban heat island effects:, Sustain. Cities Soc. 46, 101392 (2019).
  • 24. IPCC, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, Cambridge, United Kingdom and New York, NY, USA, 2021), pp. 1-2409.
  • 25. B. Clarke, F. Otto, R. Stuart-Smith, L. Harrington, “Extreme weather impacts of climate change: an attribution perspective”, Environ. Res. Clim. 1, 012001 (2022).
  • 26. K.J.E. Walsh, S.J. Camargo, T.R. Knutson, J. Kossin, T.-C. Lee, H. Murakami, C. Patricola, “Tropical cyclones and climate change”, Trop. Cyclone Res. Rev. 8, 240–250 (2019).
  • 27. D.F. Balting, A. AghaKouchak, G. Lohmann, M. Ionita, “Northern Hemisphere drought risk in a warming climate”, Clim. Atmos. Sci. 4, 61 (2021).
  • 28. O. Lhotka, J. Kyselý, A. Farda, “Climate change scenarios of heat waves in Central Europe and their uncertainties”, Theor. Appl. Climatol. 131, 1043–1054 (2018).
  • 29. S. Pfahl, P.A. O’Gorman, E.M. Fischer, “Understanding the regional pattern of projected future changes in extreme precipitation”, Nat. Clim. Chang. 7, 423–427 (2017).
  • 30. A.M. Tomczyk, E. Bednorz, K. Szyga-Pluta, “Changes in air temperature and snow cover in winter in Poland”, Atmosphere (Basel) 12, 68 (2021).
  • 31. M. Kejna, M. Rudzki, “Spatial diversity of air temperature changes in Poland in 1961–2018”, Theor. Appl. Climatol. 143, 1361–1379 (2021).
  • 32. A.M. Tomczyk, E. Bednorz, M. Półrolniczak, L. Kolendowicz, “Strong heat and cold waves in Poland in relation with the large-scale atmospheric circulation”, Theor. Appl. Climatol. 137,1909–1923 (2019).
  • 33. J. Wibig, “Heat waves in Poland in the period 1951-2015: trends, patterns and driving factors”, Meteorol. Hydrol. Water Manag. 6, 37–45 (2018).
  • 34. C. Koźmiński, J. Nidzgorska-Lencewicz, A. Mąkosza, B. Michalska, “Ground Frosts in Poland in the Growing Season”, Agric. 11, 573 (2021).
  • 35. M. Szwed, “Variability of precipitation in Poland under climate change”, Theor. Appl. Climatol. 135, 1003–1015 (2019).
  • 36. I. Pińskwar, A. Choryński, D. Graczyk, Z.W. Kundzewicz, “Observed changes in extreme precipitation in Poland: 1991–2015 versus 1961–1990”, Theor. Appl. Climatol. 135, 773–787 (2019).
  • 37. M. Szwed, I. Pińskwar, Z.W. Kundzewicz, D. Graczyk, A. Mezghani, “Changes of snow cover in Poland”, Acta Geophys. 65, 65–76 (2017).
  • 38. M. Falarz, E. Bednorz, “Snow Cover Change”, in: Climate Change in Poland. Past, Present, Future. Edited by M. Falarz (Springer, Cham, Switzerland, 2021), pp. 375–390.
  • 39. E. Siwiec (Ed), Atlas skutków zjawisk ekstremalnych w Polsce (IOŚ-PIB, Warsaw, Poland, 2023), pp.1-79.
  • 40. IMGW, Informatyczny System Osłony Kraju, Silny Wiatr. Zróżnicowanie Sezonowe i Przestrzenne. https://imgw.isok.gov.pl/mapy-zagrozen-i-ryzyka/zagrozenia-meteorologiczne/silny-wiatr/zroznicowaniesezonowe-i-przestrzenne.html. (Accessed 12.12.2022).
  • 41. GUNB, Wyciąg ze sprawozdania z działalności komisji powołanej przez Głównego Inspektora Nadzoru Budowlanego w sprawie ustalenia przyczyn i okoliczności katastrofy budowlanej w dniu 28 stycznia 2006 r. pawilonu wystawienniczego przy ul. Bytkowskiej 1 na terenie Miedzynarodowych Targów w Katowicach, Warszawa, 2006. https://www.gunb.gov.pl/sites/default/files/attachment/katowice_wyciag.pdf. (Accessed 01.12.2022).
  • 42. B. Lewicki, J.A. Żurański, “Obciążenie śniegiem w nowych normach polskich”, Wiadmości Proj. Budownictwa 1, (2007) 18–21.
  • 43. J. Gierczak, R. Ignatowicz, W. Lorenc, “Steel structure of the roof in lower saucer of the Śnieżka Meteorological observatory in the context of the state of emergency”, in: 26 Int. Conf. Stuctural Fail. Międzyzdroje, 21-24.05.2013, 2013, pp. 1–8.
  • 44. A. Rawska-Skotniczny, A. Marynowicz, M. Nalepka, “Errors in the design of temporary and solid fabric structures”, in: 28 Int. Conf. Stuctural Fail. Międzyzdroje, 22-26.05.2017, 2017, pp. 1–12.
  • 45. PINB Szczecin, Documentation of the tent hall disaster 04.02.2015, 3/5/7 Szafera St., Szczecin, (documents made available to the authors by the authority).
  • 46. J. Geis, K. Strobel, A. Liel, “Snow-Induced Building Failures”, J. Perform. Constr. Facil. 26, 377–388 (2012).
  • 47. CEN, EN 12056-3 Gravity drainage systems inside buildings - Part 3: Roof drainage, layout and calculation, 2000.
  • 48. PINB Poznań, Katastrofa budowlana sali gimnastycznej w Poznaniu, to nie tylko sygnał ostrzegawczy, to też pytanie o skuteczność przepisów, (2021). http://www.pinb.poznan.pl/index.php/115-dzialalnoscinspektoratu/artykuly/469-katastrofa-budowlana-sali-gimnastycznej-w-poznaniu-to-nie-tylko-sygnalostrzegawczy-to-tez-pytanie-o-skutecznosc-przepisow. (Accessed 01.12.2022).
  • 49. G. Arioli, F. Gazzola, “A new mathematical explanation of what triggered the catastrophic torsional mode of the Tacoma Narrows Bridge”, Appl. Math. Model. 39, 901–912 (2015).
  • 50. J.A. Żurański, M. Gaczek, S. Fiszer, “Measures for minimising windstorm damage to buildings”, in: 25 Int. Conf. Stuctural Fail. Międzyzdroje, 24-27.05.2011, 2011, pp. 1–10.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e08e1212-d5d0-4ec0-abf2-1a3a55e898bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.