Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 55, nr 11 | 18-26
Tytuł artykułu

Modelowanie transportu elektronów w kwantowych laserach kaskadowych

Autorzy
Warianty tytułu
EN
Modeling of electron transport in quantum cascade lasers
Konferencja
Krajowa Konferencja Elektroniki (13 ; 09-13.06.2014 ; Darłówko Wschodnie, Polska)
Języki publikacji
PL
Abstrakty
PL
W artykule omówiono metody modelowania obszaru aktywnego struktury kwantowego lasera kaskadowego. Na przykładzie struktury lasera, emitującego w zakresie średniej podczerwieni, wskazano analogie i różnice między obrazem transportu elektronowego wynikające z analizy z użyciem m.in. najprostszego modelu równań kinetycznych, metody macierzy gęstości oraz najbardziej zaawansowanym modelem bazującym na formalizmie nierównowagowych funkcji Greena. Uzupełnieniem ww. metod jest metoda Monte Carlo, w której możliwe jest m.in. uwzględnienie rozproszeń elektron-elektron oraz rozproszeń międzydolinowych.
EN
In the paper, the modeling methods of active region of quantum cascade laser (QCL) structure are reviewed. For QCL structure, emitting in the mid-infrared range, the similarities and the differences between electron transport image resulting from (i) the simplest rate equations model, (ii) the density matrix method, and (iii) the most advanced model based on nonequilibrium Green’s formalism are discussed. The Monte Carlo method, which benefits from including electron-electron, electron-photon, and intervalleys scatterings, is also considered.
Wydawca

Rocznik
Strony
18-26
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
  • Politechnika Rzeszowska, Katedra Podstaw Elektroniki
Bibliografia
  • [1] Faist J.: Quantum cascade lasers. Oxford Univ. Press, 2013.
  • [2] Harrison P., Indjin D., and Kelsall R. W.: Electron temperature and mechanisms of hot carrier generation in quantum cascade lasers. Journal of Applied Physics, vol. 92, pp. 6921–6923, 2002.
  • [3] Faist J., Hofstetter D., Beck M., Aellen T., Rochat M., and Blaser S.: Bound-to-Continuum and Two-Phonon Resonance Quantum- Cascade Lasers for High Duty Cycle, High-Temperature Operation. IEEE Journal of Quantum Electronics, vol. 38, pp. 533–546, 2002.
  • [4] Sirtori C., Capasso F., Faist J., Hutchinson A. L., Sivco D. L., and Cho A. Y.: Resonant Tunneling in Quantum Cascade Lasers. IEEE Journal of Quantum Electronics, vol. 34, pp. 1722–1729, 1998.
  • [5] Iotti R. C., and Rossi F.: Nature of Charge Transport in Quantum- Cascade Lasers. Physical Review Letters, vol. 87 p. 146603, 2001.
  • [6] Cellebaut H., and Hu Q.: Importance of coherence for electron transport in terahertz quantum cascade lasers. Journal of Applied Physics, vol. 98, p. 104505, 2005.
  • [7] Terazzi R., and Faist J.: A density matrix model of transport and radiation in quantum cascade lasers. New Journal of Physics, vol. 12, p. 033045, 2010.
  • [8] Lee S.-C., and Wacker A.: Nonequilibrium Green’s function theory for transport and gain properties of quantum cascade structures. Physical Review B, vol. 66, p. 245314, 2002.
  • [9] Kubis T., Yeh C., Vogl P., Benz A., Fasching G., and Deutsch C.: Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers. Physical Review B, vol. 79, p. 195323, 2009.
  • [10] Hałdaś G., Kolek A., and Tralle I.: Modeling of Mid-Infrared Quantum Cascade Laser by Means of Nonequilibrium Green’s Functions. IEEE Journal of Quantum Electronics, vol. 47, pp. 878–885, 2011.
  • [11] Wacker A.: Coherence and spatial resolution of transport in quantum cascade lasers. phys. stat. sol. (c), vol. 5, No. 1, pp. 215–220, 2008.
  • [12] Winge D. O, Lindskog M., and Wacker A.: Nonlinear response of quantum cascade structures. Applied Physics Letters, vol. 101, p. 211113, 2012.
  • [13] Schmielau T., and Pereira M. F. Jr.: Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers. Applied Physics Letters, vol. 95, p. 231111, 2009.
  • [14] Kolek A., Hałdaś G., and Bugajski M.: Nonthermal carrier distributions in the subbands of 2-phonon resonance mid-infrared quantum cascade laser. Applied Physics Letters, vol. 101, p. 061110, 2012. 15] Iotti R. C., and Rossi F.: Carrier thermalization versus phonon-assisted relaxation in quantum-cascade lasers: A Monte Carlo approach. Applied Physics Letters, vol. 78, pp. 2902–2904, 2001.
  • [16] Mátyás A., Lugli P., and Jirauschek C.: Photon-induced carrier transport in high efficiency midinfrared quantum cascade lasers. Journal of Applied Physics, vol. 110, p. 013108, 2011.
  • [17] Jirauschek C., and Kubis T.: Modeling techniques for quantum cascade lasers. Applied Physics Review, vol. 1, p. 011307, 2014.
  • [18] Jirauschek C.: Monte Carlo study of carrier-light coupling in terahertz quantum cascade lasers. Applied Physics Letters, vol. 96, p. 011103, 2010.
  • [19] Borowik P., Thobel J. L., and Adamowicz L.: Monte Carlo based microscopic description of electron transport in GaAs/Al0.45Ga0.55As quantum-cascade laser structure. Journal of Applied Physics, vol. 108, p. 073106, 2010.
  • [20] Mátyás A., Kubis T., Lugli P., and Jirauschek C.: Comparison between semiclassical and full quantum transport analysis of THz quantum cascade lasers. Physica E, vol. 42, pp. 2628–2631, 2010.
  • [21] Gao X., Botez D., and Knezevic I.: X-valley leakage in GaAs/Al- GaAs quantum cascade lasers. Applied Physics Letters, vol. 89, p. 191119, 2006.
  • [22] Sirtori C., Capasso F., Faist J., and Scandolo S.: Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions. Physical Review B, vol. 50, pp. 8663–8674, 1994.
  • [23] Shin J. C., D’Souza M., Liu Z., Kirch J., Mawst L. J., Botez D., Vurgaftman I., and Meyer J. R.: Highly temperature insensitive, deepwell 4.8 μm emitting quantum cascade semiconductor lasers. Applied Physics Letters, vol. 94, p. 201103, 2009.
  • [24] Hałdaś G., and Kolek A.: Sprawozdanie merytoryczne zadania nr 10 „Opracowanie narzędzi symulacyjnych wspomagających projektowanie kwantowych laserów kaskadowych” projektu zamawianego PZB-MNiSW-02/I/2007.
  • [25] Zhang S. Y., Revin D. G., Cockburn J. W., Kennedy K., Krysa A. B., and Hopkinson M.: λ∼3.1 μm room temperature InGaAs/AlAsSb/InP quantum cascade lasers. Applied Physics Letters, vol. 94, p. 031106, 2009.
  • [26] Davis J. H.: The physics of low-dimensional semiconductors. Cambridge Univ. Press, 1998.
  • [27] Faist J., Capasso F., Sirtori C., Sivco D. L., Hutchinson A. L., and Cho A. Y.: Vertical transition quantum cascade laser with Bragg confined excited state. Applied Physics Letters, vol. 66, pp. 538–540, 1995.
  • [28] Terrazzi R.: Transport in quantum cascade lasers: Investigation of numerical transport models in quantum cascade lasers. LAP LAMBERT Academic Publishing, 2012.
  • [29] Kazarinov R. F., and Suris R. A.: Possibility of amplification of electromagnetic waves in a superconductor with a superlattice. Soviet Physics Semiconductors, vol. 5, pp. 797–800, 1971.
  • [30] Wittmann A., Bonetti Y., Faist J., Gini E., and Giovannini M.: Intersubband linewidths in quantum cascade laser designs. Applied Physics Letters, vol. 93, p. 141103, 2008.
  • [31] Lake R., Klimeck G., Bowen R. C., and Jovanovic D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. Journal of Applied Physics, vol. 81, pp. 7845–7869, 1997.
  • [32] Wacker A.: Gain in quantum cascade lasers and superlattices: A quantum transport theory. Physical Review B, vol. 66, p. 085326, 2002.
  • [33] Bugajski M., Gutowski P., Karbownik P., Kolek A., Hałdaś G., Pierściński K., Pierścińska D., Kubacka-Traczyk J., Sankowska I., Trajnerowicz A., Kosiel K., Szerling A., Grzonka J., Kurzydłowski K., Slight T., and Meredith W.: Mid-IR quantum cascade lasers: Device technology and non-equilibrium Green’s function modeling of electro-optical characteristics. Physica Status Solidi B, vol. 251, pp. 1144–1157, 2014.
  • [34] Friedli P., Sigg H., Wittmann A., Terazzi R., Beck M., Kolek A., and Faist J.: Synchrotron infrared transmission spectroscopy of a quantum cascade laser correlated to gain models. Applied Physics Letters, vol. 102, p. 012112, 2013.
  • [35] Benz A., Fasching G., Andrews A. M., Martl M., Unterrainer K., Roch T., Schrenk W., Golka S., and Strasser G.: Influence of doping on the performance of terahertz quantum-cascade lasers. Applied Physics Letters, vol. 90, p. 101107, 2007.
  • [36] Kolek A., Hałdaś G., Bugajski M., Pierściński K., and Gutowski P.: Impact of Injector Doping on Threshold Current of Mid-Infrared Quantum Cascade Laser–Non-Equilibrium Green’s Function Analysis. IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, p. 1200110, January/February 2015.
Uwagi
PL
Pracę wykonano w ramach projektu finansowanego przez Narodowe Centrum Badań i Rozwoju – projekt badawczy nr PBS1/B3/2/2012 (EDEN).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e0887709-2666-41e7-b7fd-3e728e7b7a53
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.