Warianty tytułu
Języki publikacji
Abstrakty
The problem of reducing primary energy consumption is increasingly discussed in the technical literature. Relatively large amounts of energy are used to heat rooms. In the case of resources of much cheaper waste energy or energy from renewable sources with a temperature lower than required in the rooms, the so-called "thermal barrier" placed in external walls can be used to reduce heat transmission losses. The thermal barrier is a vertical wall element with pipes with a heating medium installed in the partition, with a temperature lower than the temperature in the room but higher than that resulting from the heat transfer through the partition without a barrier. In the paper, on the basis of the developed model of a partition with the thermal barrier, for the assumed input values and the partition's surroundings, the efficiency of the thermal barrier was defined and determined. A formula for its efficiency was derived. The efficiency of the thermal barrier does not depend on the temperatures of the barrier base and the wall environment, but only on the geometrical and thermodynamic parameters of the partition. It has also been shown that the efficiency of the thermal barrier is the highest when the resistance of the partition on both sides of the barrier is the same. Knowledge of the barrier efficiency will allow to easily determine the average barrier temperature and the amount of heat given off by the room and by the heating medium flowing in the barrier. It should be noted that the total amount of heat given off by a wall with a thermal barrier is greater than through a wall without a barrier, but the costs of heating the room may be lower.
Słowa kluczowe
Rocznik
Tom
Strony
277--286
Opis fizyczny
Bibliogr. 33 poz., fig.
Twórcy
- Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, al. Piastów 50a, 71-311 Szczecin, Poland , dlp@zut.edu.pl
autor
- Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, al. Piastów 50a, 71-311 Szczecin, Poland
Bibliografia
- 1. Kurniawan T.B., Dewi D.A., Usman F., Fadly F. Towards Energy Analysis and Efficiency for Sustainable Buildings. Emerging Science Journal, Dec 2023; 7(6), http://dx.doi.org/10.28991/ ESJ-2023-07-06-022
- 2. Chen, W., Huang, Z., Chua K.J. Sustainable Energy recovery from thermal processes: a review. Energ Sustain Soc 2022; 12, 46. https://doi.org/10.1186/ s13705-022-00372-2
- 3. Barkanyi T. Patent No. P398122, Element of building construction for active insulation of buildings, 2012.
- 4. Barkanyi T., Nagylucskay L. Building structure with active heat. EP2231952A1 European Patent Office, 11.06.2009
- 5. Kisilewicz T., Fedorczak-Cisak M., Barkanyi T. Active thermal insulation as an element limiting heat loss through external walls. Energy and Buildings, 2019; 205(15): 109541. https://doi.org/10.1016/j. enbuild.2019.109541
- 6. isomax.isodom.pl (Accessed: 10.02.2023)
- 7. Leciej-Pirczewska D., Szaflik W. Use of low temperature medium in wall heating (in Polish). Ciepłownictwo, Ogrzewnictwo, Wentylacja, 2010; 41(5): 168–172.
- 8. Leciej-Pirczewska D., Szaflik W. Use of low-temperature medium in wall heating (in Polish). Part II, Ciepłownictwo, Ogrzewnictwo, Wentylacja, 2010; 41(12): 455–459.
- 9. Leciej-Pirczewska D., Szaflik W. Effect of thermal barrier temperature in building wall on heat loss (in Polish). X Forum Ciepłowników Polskich, Międzyzdroje, 2006.
- 10. Ulbrich R., Radlak G. Application of environmental energy in modern solutions of passive buildings based on Isomax system. Zeszyty Naukowe Politechniki Opolskiej s. Inżynieria Środowiska, 2005.
- 11. Yang Y., Chen S., Chang T. X., Ma J. R., Sun Y. Uncertainty and global sensitivity analysis on thermal performances of pipe-embedded building envelope in the heating season. Energy Conversion and Management, Article, Sep 2021; 244(23): 114509, https://doi: 10.1016/j.enconman.2021.114509
- 12. Małek M. Effect of thermally activated partition parameters on thermal comfort and energy consump- tion (in Polish). Department of Environmental and Energy Engineering. Doctoral dissertation. Supervisor: prof. dr hab. inż. Halina Koczyk. Poznań, 2022.
- 13. Krzaczek M. Thermal Barrier Concept in Buildings with Very Low Energy Demand (in Polish). Inżynieria Morska i Geotechnika, 2010; 2: 154–162.
- 14. Krzaczek M., Kowalczuk Z. Thermal Barrier as a technique of indirect heating and cooling for resiential buildings. Energy and Buildings, Article, Apr 2011; 43(4): 823–837, https://doi.org/10.1016/j. enbuild.2010.12.002
- 15. Krzaczek M., Florczuk J., Tejchman J. Improved energy management technique in pipe-embedded wall heating/cooling system in residential buildings. Applied Energy, Nov 2019; 254(27): 113711, https://doi: 10.1016/j.apenergy.2019.113711
- 16. Zhou L.Q., Li C.J. Study on thermal and Energy saving performances of pipeembeddedwall utilizing low-grade energy. Applied Thermal Engineering, Jul 2020; 176(11): 115477, https://doi: 10.1016/j. applthermaleng.2020.115477
- 17. Chen S., Yang Y., Olomi C., Zhu L. Numerical study on the winter thermal performance and energy saving potential of thermo-activated PCM composite wall in existing buildings. Building Simulation, Article, Apr 2020; 13(2): 237–256, https://doi: 10.1007/s12273-019-0575-8
- 18. Chen S., Chang T., Yang Y. Summer thermal and energy performances assessment of a modular hydronic thermal barrier wall for ultra-low Energy buildings - A field experimental study. Applied Thermal Engineering 2024; 236: 121491, https:// doi.org/10.1016/j.applthermaleng.2023.121491
- 19. Chen S., Chang T., Yang Y., He Ch., Gong Q. Experimental and numerical study on thermal performances of a modular hydronic thermal barrier wall with heat injection system in filler cavities. International Journal of Thermal Sciences, 2024; 196: 108727, https://doi.org/10.1016/j.ijthermalsci.2023.108727
- 20. Krajcik M., Sikula O. The possibilities and limitations of using radiant wall cooling in new and retrofitted existing buildings. Applied Thermal Engineering, Jan 2020; 164: 15, 114490, https://doi: 10.1016/j.applthermaleng.2019.114490
- 21. Krajcik M., Arici M., Sikula O., Simko M. Review of water-based wall systems: Heating, cooling, and thermal barriers. Energy and Buildings, Review, Dec 2021; 253: 31, 111476, https://doi: 10.1016/j. enbuild.2021.111476
- 22. Dharmasastha K., Samuel D.G.L., Nagendra S.M.S., Maiya M.P. Experimental investigation of thermally activated glass fibre reinforced gypsum roof. Energy and Buildings, Article Dec 2020; 228: 14, 110424, https://doi: 10.1016/j.enbuild.2020.110424
- 23. Zhu Q.Y., Xu X.H., Gao J.J., Xiao F. A semi-dynamic model of active pipeembedded building envelope for thermal performance evaluation. International Journal of Thermal Sciences, Feb 2015; 88(170–179), https://doi: 10.1016/j.ijthermalsci.2014.09.014
- 24. Zhu Q.Y., Li A.B., Xie J.L., Li W.G., Xu X.H. Experimental validation of a semi-dynamic simplified model of active pipe-embedded building envelope. International Journal of Thermal Sciences, Article, Oct 2016; 108(70–80), https://doi: 10.1016/j. ijthermalsci.2016.05.004
- 25. Romani J., Perez G., de Gracia A. Experimental evaluation of a cooling radiant wall coupled to a ground heat exchanger. Energy and Buildings, Oct 2016; 129(484–490), https://doi: 10.1016/j. enbuild.2016.08.028
- 26. Romani J., Perez G., de Gracia A.: Experimental evaluation of a heating radiant wall coupled to a ground source heat pump. Renewable Energy, Article vol. 105, pp. 520-529, May 2017, https://doi: 10.1016/j.renene.2016.12.087
- 27. Romani J., Cabeza L. F., de Gracia A. Development and experimental validation of a transient 2D numeric model for radiant walls. Renewable Energy, Jan 2018; 115(859–870), https://doi: 10.1016/j. renene.2017.08.019
- 28. Stojanovic B.V., Janevski J.N., Mitkovic P.B., Stojanovic M.B., Ignjatovic M.G. Thermally activated building systems in context of increasing building energy efficiency. Thermal Science, Article; Proeedings Paper, 2014; 18(3): 1011–1018, https:// doi: 10.2298/tsci1403011s
- 29. Szaflik W. Analysis of heat transfer in double-layer fins. Department of Mechanical and Shipbuilding. Doctoral dissertation. Supervisor: prof. dr hab. inż. Władysław Nowak. Szczecin, 1982.
- 30. Kern D.Q., Kraus A.D. Extended surfage heat transfer. McGraw Hill Book Company. New York, 1972.
- 31. Incropera F.P., DeWitt D.P., Bergman T.L., Lavine A.S. Fundamentals of Heat and Mass Transfer. John Wiley & Sons, 2007.
- 32. Szaflik W. Thermal barrier efficiency (in Polish), 2023; 6: 15–18, https://doi.org/10.36119/15.2023.6.2 33. Szaflik W. Effect of thermal barrier partition parameters on barrier performance (in Polish). 2023; 7/8: 24–27, https://doi.org/10.36119/15.2023.7-8.3
- 33. Szaflik W. Effect of thermal barrier partition parameters on barrier performance (in Polish). 2023; 7/8: 24–27, https://doi.org/10.36119/15.2023.7-8.3
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e086fe33-146d-4607-90ce-978fa5135495