Czasopismo
2020
|
Vol. 68, no. 2
|
435--444
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Wave propagation through porous media allows us to understand the response and interaction that occur between the elastic rock matrix and the fuid. This interaction has been described by Biot in his theory of poroelasticity. Seismic wave simulation using Biot’s formulations is computationally expensive when compared with the acoustic and elastic cases. This computational burden can be reduced by reformulating the numerical derivative operators to improve the efciency. To achieve this, we used a staggered-grid fnite diference operator to discretize 2D velocity stress equations as given by Biot’s theory. A vectorized derivative is applied on the staggered grid by shifting the coordinates. The reformulated equations were applied to compute the seismic response of a reservoir, where CO2 is being injected and the efect of injected CO2 in the formation is clearly seen in the synthetic data generated. The algorithm was coded in Python and to test its efciency, the simulation run-time was compared for both serial and vectorized equations, and the speed-up ratio was calculated. Our results show a decrease in the simulation run-time for the vectorized execution with over a factor of a hundred percent (100%). We further observed that the amplitudes of the events increase with an increase in CO2 saturation in the formation. This matches well with the real data.
Czasopismo
Rocznik
Tom
Strony
435--444
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
- AcSIR-NGRI, Hyderabad 500007, India, tonyndokalemma@gmail.com
- Department of Physics, Imo State University, Owerri, Nigeria
autor
- AcSIR-NGRI, Hyderabad 500007, India, nimisha@ngri.res.in
- CSIR-National Geophysical Research Institute, Hyderabad 500007, India
Bibliografia
- 1. Berenger J (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114:185–200
- 2. Berryman J (1980) Confirmation of biot’s theory. Appl Phys Lett 37:168–178
- 3. Biot M (1956a) Theory of propagation of elastic waves in a fluid saturated porous solid, part i: low frequency range. J Acoust Soc Am 28(2):168–178
- 4. Biot M (1956b) Theory of propagation of elastic waves in a fluid saturated porous solid, part ii: high frequency range. J Acoust Soc Am 28(2):179–191
- 5. Biot M (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498
- 6. Bohlen T (2002) Parallel 3-d viscoelastic finite-difference seismic modelling. Comput Geosci 28(8):887–899
- 7. Boutin C, Bonnet PY (1986) Green’s functions solutions and associated sources in infinite and stratified poroelastic media. J Geophys Res 90:521–550
- 8. Burridge R, Keller J (1982) Poroelasticity equations derived from microstructure. J Acoust Soc 70:1140–1146
- 9. Burridge R, Vargas CA (1978) The fundamental solution in dynamic poroelasticity. J Geophys Res 58:61–90
- 10. Carcione J (1996a) Full frequency-range transient solution for p-wave in a fluid-saturated viscoacoustic porous medium. Geohys Prospect 44:99–129
- 11. Carcione J (1996b) Wave propagation in anisotropic, saturated porous media: plane-wave theory and numerical simulation. J Acoust Soc Am 99:2655–2666
- 12. Carcione JM, Picotti S, Gei D, Rossi G (2006) Physics and seismic modeling for monitoring CO22 storage. Pure Appl Geophys 163:175–207
- 13. Dai N, Vafidis A, Kanasewich ER (1995) Wave propagation in heterogeneous, porous media: a velocity-stress, finite-difference method. Geophysics 60(2):327–340
- 14. Itz R, Iturrarn-Viveros U, Parra JO (2016) Optimal implicit 2-D finite differences to model wave propagation in poroelastic media. Geophys J Int 206(2):1111–1125
- 15. Malkoti A, Nimisha V, Tiwari RK (2018) An algorithm for fast elastic wave simulation using a vectorized finite difference operator. Comput Geosci 116:23–31
- 16. Morency C, Luo Y, Tromp J (2011) Acoustic, elastic and poroelastic simulations of CO2CO2 sequestration monitoring based on spectral-element and adjoint methods. Geophys J Int 185:955–966
- 17. Morency CTJ (2008) Spectral-element simulations of wave propagation in porous media. Geophys J Int 175:301–345
- 18. O’Brien GS (2010) 3D rotated and standard staggered finite-difference solutions to biots poroelastic wave equations: Stability condition and dispersion analysis. Geophysics 75(4):T111–T119
- 19. Ozdenvar T, McMechan G (1997) Algorithms for staggered-grid computations for poroelastic, elastic, acoustic, and scalar wave equations. Geophys Prospect 45:403–420
- 20. Plona TJ (1980) Observation of a second bulk compressional wave in porous medium at ultrasonic frequencies. Appl Phys Lett 36(4):259–261
- 21. Pride S, Berryman J (1998) Connecting theory to experiment in poroelasticity. J Mech Phys Solids 46:719–747
- 22. Pride S, Gangi A, Morgan F (1992) Deriving the equations of motion for porous isotropic media. J Acoust Soc 92:3278–3290
- 23. Roberts AP, Garboczi EJ (2002) Computation of the linear elastic properties of random porous materials with a wide variety of microstructure. Proc R Soc Lond 458:1033–1054
- 24. Sheen D-H, Tuncay K, Baag C-E, Peter JO (2006) Parallel implementation of a velocity-stress staggered-grid finite-difference method for 2-D poroelastic wave propagation. Comput Geosci 32:1182–1191
- 25. Virieux J (1984) Sh-wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 49(11):1933–1942
- 26. Virieux J (1986) P-sv wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51(4):889–901
- 27. Wenzlau F, Muller TM (2009) Finite-difference modeling of wave propagation and diffusion in poroelastic media. Geophysics 74(4):T55–T66
- 28. Yijie Z, Jinghuai G (2019) Tutorial: source simulation for 3D poroelastic wave equations. Geophysics 84(6):W33W45
- 29. Zhang Y, Gao J, Peng J (2018) Variable-order finite difference scheme for numerical simulation in 3-D poroelastic media. IEEE Trans Geosci Remote Sens 56(5):2991–3001
- 30. Zhu X, McMechan G (1991) Finite difference modeling of the seismic response of fluid saturated, porous, elastic solid using biot theory. Geophysics 56(3):328–339
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e03993a0-63c2-4b47-a696-aea8cb162ec5