Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 24, iss. 8 | 216--224
Tytuł artykułu

Enhancing Urban Water Quality with Green Infrastructure – A Study in Guadalupe, Nuevo Leon, Mexico

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Green roofs and living walls are effective tools for addressing water management challenges in urban environments. These green infrastructure elements can mitigate rainwater runoff, reduce water contamination, and support more sustainable flow regulation. They also contribute to temperature regulation and provide habitat support for urban wildlife. Careful plant selection can maximize the positive impact of green infrastructure, reducing pollution levels and improving water quality in densely populated urban areas with extreme weather conditions. The research presented in this article raises awareness about potential challenges and risks associated with green infrastructure, such as pollutant release. Understanding the factors that influence water quality enables improved management practices and sustainable urban planning. The article also identifies various plant species with remarkable contaminant retention capabilities, particularly several metals such as calcium and sodium. These findings propose the design of effective green infrastructure solutions. This study confirms that green infrastructure effectively filters pollutants from precipitation water, making it suitable for injection into underground water wells. Overall, the research provides valuable scientific insights for urban water management, fostering eco-friendly and resilient cities in semi-arid climates.
Wydawca

Rocznik
Strony
216--224
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Ciudad Universitaria, San Nicolas de los Garza, Nuevo León, 66455, México
  • Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Ciudad Universitaria, San Nicolas de los Garza, Nuevo León, 66455, México, davila.renealberto@usfx.bo
  • Universidad Mayor, Real y Pontificia de San Francisco Xavier de Chuquisaca, Sucre, Chuquisaca, Bolivia
  • Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Ciudad Universitaria, San Nicolas de los Garza, Nuevo León, 66455, México
  • Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Ciudad Universitaria, San Nicolas de los Garza, Nuevo León, 66455, México
Bibliografia
  • 1. Abanto-Bazán R.A, Dávila-Pórcel, R.A., & Suárez-Vázquez, S.I. (2023) Characterization of particulate matter deposition on leaves of six native plant species in a green infrastructure system in the city of Monterrey, México DOI: 10.1007/s13762–023–05176–1.
  • 2. Abdel-Fattah, N.A., Abdel-Fattah, A.A., & El-Ghamry, M.M.A. (2021). Retention of heavy metals by trees in an urban environment. Environmental Science and Pollution Research, 28(33), 42197–42212.
  • 3. Alves, E.M., da Silva, R.A., Pereira, L.O., & de Paula, P.H. (2012). Eichhornia crassipes as a tool for water quality improvement in tropical reservoirs. Environmental Science and Pollution Research, 19(7), 3173–3180.
  • 4. Antrop, M. (2004). Landscape change and the urbanization process in Europe. Landscape and Urban Planning, 67, 2–26.
  • 5. Appiotti, G.C., D’Amato, M.M., & De Luca, M.C. (2022). The role of vegetation in the retention of atmospheric pollutants: A review. Environmental Pollution, 279(117656).
  • 6. Awasthi, S.S., Tiwari, M. K., Singh, M., & Mishra, V.K. (2021). Effects of vegetation on the retention of atmospheric pollutants: A review. Environmental Science and Pollution Research, 28(1), 227–244.
  • 7. Carvalho, F.A., Alves, E.M., da Silva, R.A., Pereira, L.O., & de Paula, P.H. (2015). Effects of Eichhornia crassipes on water quality in a tropical urban reservoir. Nvironmental Science and Pollution Research, 22(21), 14214–14222.
  • 8. Chen, X., Wang, J., Zhang, M., & Li, S. (2021). The impact of green infrastructure on sodium concentrations in urban stormwater unoff. Science of the Total Environment, 769(144655).
  • 9. Compton, J.E., & P.B.R. (2009). Monitoring green roof hydrologic and water quality performance in a temperate climate. Journal of Environmental Quality. https://doi.org/10.2134/jeq2008.0387
  • 10. Czemiel, J. (2010). Green roof performance towards management of runoff water quantity and quality: A review,. Ecological Engineering, 36, 352–360.
  • 11. da Silva, R.A., Oliveira, J.M., de Araújo, P.M., & Pereira, L.O. (2013). The role of Eichhornia crassipes in the retention of heavy metals in water bodies: A review. Environmental Science and Pollution Research, 20(8), 5277–5285.
  • 12. Getter, K.L., R.D.B., & R.G.P. (2007). Performance of a prototype green roof system in a temperate climate. Transactions of the ASABE. https://doi.org/10.13031/2013.22805.
  • 13. Kumar, S., Singh, R.K., & Mishra, M.K. (2009). Determination of trace elements in water by inductively coupled plasma optical emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 64(B). https://doi.org/10.1016/j.sab.2009.03.009
  • 14. Langemeyer, J., Wedgwood, D., McPhearson, T., Baró, F., Madsen, A., & Barton, N. (2020). Creating urban green infrastructure where it is needed – A spatial ecosystem service-based decision analysis of green roofs in Barcelona,. Science of The Total Environment, 707, 1–15.
  • 15. Martínez-Martínez, M., García-Muñoz, M.A., & Ruiz-Muñoz, M.J. (2021). The effect of vegetation on the retention of atmospheric particles: A review. Atmospheric Environment, 263(117712).
  • 16. Mathew, J., & Thomas, S. (2016). Morphological and anatomical characterization of Eichhornia crassipes: Implications for water quality improvement. Environmental Science and Pollution Research, 23(17), 13703–13713.
  • 17. Mentens, J., Raes, D., & Hermy, M. (2006). Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st Century. Landscape and Urban Planning, 77, 217–226.
  • 18. Muchanyereyi, N., Kugara, J., & Zaranyika, M. (2016). Surface composition and surface properties of Eichhornia crassipes root biomass: Effect of mineral acid and organic solvent treatment. African Journal of Biotechnology, 15, 897–909.
  • 19. Oberndofer, E., Lundholm, J., Bass, B., & Coffman, R. (2007). Green roofs as urban ecosystems: ecological structures, functions and services,. BioScience, 57, 823–833.
  • 20. Oliveira, J.M., de Araújo, P.M., da Silva, R.A., da Silva, A.C., & Pereira, L.O. (2014). The role of Eichhornia crassipes in the retention of nutrients and heavy metals in tropical urban water bodies. Ecotoxicology and Environmental Safety, 104, 121–127.
  • 21. Reyes R.,, Victorero F., Bonilla C., Bustamante W., Pastén P., Rojas V., Suárez F., Vera S., & Victorero F. (n.d.). Effect of substrate depth and roof layers on green roof temperature and water requirements in a semi-arid climate.
  • 22. Rowe, B. (2010). Green Roofs as a Means of Pollution Abatement. Environmental Pollution, 159, 2100–2110.
  • 23. Sorribas-de-Vega, M., Ruiz-Muñoz, M. J., Aranda-Gómez, M. T., & et al. (2022). Retention of heavy metals by different plant species in urban gardens. Science of the Total Environment, 822(153577).
  • 24. Stovin, V., P.S., & B.C. (2013). Hydrological performance of extensive green roofs in a temperate climate. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2013.04.008
  • 25. Suliman, M.S., El-Shahawi, A.R., & Hegazy, M.A. (2008). Determination of trace elements in water by inductively coupled plasma atomic emission spectrometry with hydride generation. Journal of Analytical Atomic Spectrometry, 23(6). https://doi.org/10.1039/b715553d
  • 26. Thompson, M.J., Jones, A.R., & McArthur, G.J. (2007). Determination of Trace Elements in Rainwater by Inductively Coupled Plasma Mass Spectrometry. Analytica Chimica Acta, 580(1). https://doi.org/10.1016/j.aca.2006.10.015
  • 27. VanWoert, D., Nicholaus, D., Bradley R., Andresen, A., Clayton, L., Rugh, R., Fernandez, T., & Xiao, L. (2005). Green Roof Stormwater Retention. Journal of Environmental Quality, 34, 1036–1044.
  • 28. Wang, H., Zhang, L., Liu, Q., & Zhang, M. (2022). The role of green infrastructure in the removal of sodium from stormwater runoff.. Environmental Science and Pollution Research, 29(2), 2065–2077.
  • 29. Wang, S.,, &, Zhang, J., & Wang, Y. (2021). A method for the determination of calcium and sodium in rainwater samples by atomic absorption spectrophotometry. Ournal of Analytical Chemistry, 86(4), 397–403.
  • 30. Zhang, L., Zhang, H., & Liu, Q. (2020). Sodium removal from stormwater runoff by green infrastructure: A review.. Environmental Science and Pollution Research, 27(12), 13685–13702.
  • 31. Zhang, L., Zhang, Y., & Li, X. (2022). Determination of calcium and sodium in rainwater samples by atomic absorption spectrophotometry. Environmental Science and Pollution Research, 29(1), 1035–1042.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-dfaec33e-d1d2-4a4a-b2ee-89baf9922bf4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.