Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | R. 99, nr 10 | 229--232
Tytuł artykułu

Biodegradowalne, przewodzące i elastyczne podłoża dla urządzeń opto-elektronicznych

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Biodegradable, conductive and flexible substrates for opto-electronic devices
Języki publikacji
PL
Abstrakty
PL
Dokonano analizy porównawczej wpływu zawartości poszczególnych składników na wybrane właściwości warstw hybrydowych dwu- i trójskładnikowych na bazie trzech polimerów biodegradowalnych z domieszką jednościennych nanorurek węglowych (SWCN) i ciekłego kryształu 5CB. Pokazano, że najlepsze właściwości dla zastosowań w opto-elektronice jako biodegradowalna elektroda wykazuje kompozyt L,D-PLA:5CB:SWCN (10:1:0,5) o dużej elastyczności oraz dobrej stabilności termicznej.
EN
A comparative analysis of the impact of the content of individual components on selected properties of two- and three-component hybrid layers based on three biodegradable polymers with an admixture of single-walled carbon nanotubes (SWCN) and 5CB liquid crystal was carried out. The best one for applications in opto-electronics as a biodegradable electrode turned out to be the L,D-PLA:5CB:SWCN (10:1:0,5) composite with high flexibility and good thermal stability.
Wydawca

Rocznik
Strony
229--232
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
  • Uniwersytet Jagielloński, Instytut Fizyki im. M. Smoluchowskiego, ul. Łojasiewicza 11, 30-348 Kraków, monika.marzec@uj.edu.pl
  • Uniwersytet Jagielloński, Instytut Fizyki im. M. Smoluchowskiego, ul. Łojasiewicza 11, 30-348 Kraków, patrykfryn@gmail.com
  • Uniwersytet Jagielloński, Instytut Fizyki im. M. Smoluchowskiego, ul. Łojasiewicza 11, 30-348 Kraków, sebastian.lalik@uj.edu.pl
  • Akademia Wojsk Lądowych imienia generała Tadeusza Kościuszki, Wydział Nauk o Bezpieczeństwie, ul. Czajkowskiego 109, 51-147 Wrocław, agnieszka.iwan@awl.edu.pl
Bibliografia
  • [1] Büyüktanir, E.A.; Gheorghiu, N.; West, J.L.; Mitrokhin, M.; Holter, B.; Glushchenko, A. Field-induced polymer wall formation in a bistable smectic-A liquid crystal display. Appl. Phys. Lett. 89 (2006), 031101.
  • [2] Stephenson, S.W.; Johnson, D.M.; Kilburn, J.I.; Mi, X.-D.; Rankin, C.M.; Capurso, R.G. 16.3: Development of a Flexible Electronic Display Using Photographic Technology. SID Symp. Dig. Tech. Pap. 35 (2004), 774.
  • [3] Koncar, V. Optical Fiber Fabric Displays. Opt. Photonics News 16 (2005), 40–44.
  • [4] Yase, K.; Suzuki, K.; Hiroshima, M.; Mimura, A.; Shuu, Y.M.; Toda, S.; Koaizawa, H. 64.5L: Late-News Paper: Large Area Flexible Display of Fiber OLED. SID Symp. Dig. Tech. Pap. 37 (2006), 1870–1873.
  • [5] Mucha, M. Polymer as an important component of blends and composites with liquid crystals. Prog. Polym. Sci. 28 (2003), 837–873.
  • [6] Soule, E.R.; Rey, A.D. Modelling complex liquid crystal mixtures: From polymer dispersed mesophase to nematic nanocolloids. Mol. Simul. 38 (2012), 735–750.
  • [7] Li, R.; Wang, L.; Kong, D.; Yin, L. Recent progress on biodegradable materials and transient electronics. Bioact. Mater. 3 (2018), 322–333.
  • [8] Feig, V.R.; Tran, H.; Bao, Z. Biodegradable Polymeric Materials in Degradable Electronic Devices. ACS Cent. Sci. 4 (2018), 337–348.
  • [9] Chen, L.; Pang, X. The Assembly of C60 in Semicrystalline PLLA Matrix. Nano-Micro Lett. 4 (2012), 30–33.
  • [10] Liang, B.; Zhang, Z.; Chen,W.; Lu, D.; Yang, L.; Yang, R.; Zhu, H.; Tang, Z.; Gui, X. Direct Patterning of Carbon Nanotube via Stamp Contact Printing Process for Stretchable and Sensitive Sensing Devices. Nano-Micro Lett. 11 (2019), 92.
  • [11] Slabov, V.; Kopyl, S.; Dos Santos, M.P.S.; Kholkin, A.L. Natural and Eco-Friendly Materials for Triboelectric Energy Harvesting. Nano-Micro Lett. 12 (2020), 1–18.
  • [12] Nagarajan, V.; Mohanty, A.K.; Misra, M. Perspective on Polylactic Acid (PLA) based Sustainable Materials for Durable Applications: Focus on Toughness and Heat Resistance. ACS Sustain. Chem. Eng. 4 (2016), 2899–2916.
  • [13] Mallegni, N.; Phuong, T.V.; Coltelli, M.-B.; Cinelli, P.; Lazzeri, A. Poly(lactic acid) (PLA) Based Tear Resistant and Biodegradable Flexible Films by Blown Film Extrusion. Materials 2018, 11, 148.
  • [14] Zeng, J.-B.; Li, K.-A.; Du, A.-K. Compatibilization strategies in poly(lactic acid)-based blends. RSC Adv. 5 (2015), 32546– 32565.
  • [15] Iwan, A.; Caballero-Briones, F.; Bogdanowicz, K.A.; Barceinas-Sánchez, J.D.O.; Przybyl,W.; Januszko, A.; Barón-Miranda, J.A.; Espinosa-Ramirez, A.P.; Guerrero-Contreras, J. Optical and electrical properties of graphene oxide and reduced graphene oxide films deposited onto glass and Ecoflex®substrates towards organic solar cells. Adv. Mater. Lett. 9 (2018), 58–65.
  • [16] Liu, S.; Wu, G.; Chen, X.; Zhang, X.; Yu, J.; Liu, M.; Zhang, Y.; Wang, P. Degradation Behavior In Vitro of Carbon Nanotubes (CNTs)/Poly(lactic acid) (PLA) Composite Suture. Polymers 11 (2019), 1015.
  • [17] Li, M.-Q.;Wu, J.-M.; Song, F.; Li, D.-D.;Wang, X.-L.; Chen, L.;Wang, Y.-Z. Flexible and electro-induced shape memory Poly(Lactic Acid)-based material constructed by inserting a main-chain liquid crystalline and selective localization of carbon nanotubes. Compos. Sci. Technol. 173 (2019), 1–6.
  • [18] Fortunati, E.; D’Angelo, F.; Martino, S.; Orlacchio, A.; Kenny, J.M.; Armentano, I. Carbon nanotubes and silver nanoparticles for multifunctional conductive biopolymer composites. Carbon 49 (2011), 2370–2379.
  • [19] Fryń, P.; Lalik, S.; Górska, N.; Iwan, A.; Marzec, M. Comparison of the Dielectric Properties of Ecoflex® with L,D-Poly(Lactic Acid) or Polycaprolactone in the Presence of SWCN or 5CB, Materials 14 (2021), 1719.
  • [20] Fryń, P., Jewłoszewicz, B.; Bogdanowicz, K.A.; Przybył, W.; Gonciarz, A.; Pich, R.; Marzec, M.; Iwan, A. Research of Binary and Ternary Composites Based on Selected Aliphatic or Aliphatic–Aromatic Polymers, 5CB or SWCN Toward Biodegradable Electrodes, Materials 13 (2020), 2480.
  • [21] Fryń, P.; Bogdanowicz, K.A.; Krysiak, P.; Marzec, M.; Iwan, A.; Januszko, A. Dielectric, Thermal and Mechanical Properties of L,D-Poly(Lactic Acid) Modified by 40-Pentyl-4- Biphenylcarbonitrile and SingleWalled Carbon Nanotube, Polymers 11 (2019), 1867.
  • [22] Fryń, P.; Bogdanowicz, K.A.; Górska, N.; Rysz, J.; Krysiak, P.; Marzec, M.M.; Marzec, M.; Iwan, A.; Januszko, A. Hybrid Materials Based on L,D-Poly(lactic acid) and Single-Walled Carbon Nanotubes as Flexible Substrate for Organic Devices, Polymers 10 (2018), 1271.
  • [23] Fryń, P.; Lalik, S.; Bogdanowicz, K.A.; Górska, N.; Iwan, A.; Marzec, M. Degradation of hybrid material L,D-PLA:5CB:SWCN under the influence of neutral, acidic and alkaline environment, RSC Advances 13 (2023), 3792 – 3806.
  • [24] Singh, S.; Ray, S.S. Polylactide based nanostructured biomaterials and their applications. J. Nanosci. Nanotechnol. 7 (2007), 2596–2615.
  • [25] Obuchi, S.; Ogawa, S. Packaging and Other Commercial Applications. In Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications; Auras, R., Lim, L.-T., Selke, S.E.M., Tsuji, H., Eds.; John Wiley & Sons, Inc., 2010; str. 457–467.
  • [26] Mochizuki, M. Textile Applications. In Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications; Auras, R., Lim, L.-T., Selke, S.E.M., Tsuji, H., Eds.; John Wiley & Sons, Inc., 2010; str. 469–476.
  • [27] Peterson, M.S.E.; Georgiev, G.; Atherton, T.J.; Cebe, P. Dielectric analysis of the interaction of nematic liquid crystals with carbon nanotubes. Liq. Cryst. 45 (2018), 450–458.
  • [28] Ponevchinsky, V. V.; Goncharuk, A.I.; Vasil’ev, V.I.; Lebovka, N.I.; Soskin, M.S. Self-organized composites of multiwalled carbon nanotubes and nematic liquid crystal 5CB: optical singularities and percolation behavior in electrical conductivity. Proceedings of the Ninth International Conference on Correlation Optics; 2009; Vol. 7388, str. 738802.
  • [29] Minenko, S.S.; Lisetski, L.N.; Goncharuk, A.I.; Lebovka, N.I.; Ponevchinsky, V. V.; Soskin, M.S. Aggregates of multiwalled carbon nanotubes in nematic liquid crystal dispersions: Experimental evidence and a physical picture. Funct. Mater. 17 (2010), 454–459.
  • [30] Petrescu, E.; Cirtoaje, C. Dynamic behavior of a nematic liquid crystal with added carbon nanotubes in an electric field. Beilstein J. Nanotechnol. 9 (2018), 233–241.
  • [31] Fryń, P. Praca doktorska pt. Wybrane właściwości materiałów hybrydowych na bazie polimerów biodegradowalnych, ciekłego kryształu i nanorurek węglowych, Uniwersytet Jagielloński w Krakowie, 2022.
  • [32] Farrag, E.A.M. Dielectric relaxation behavior of three-phase MWCNTs-PANI polystyrene nanocomposites. J. Thermoplast. Compos. Mater. 32 (2019), 884–894
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-df9155b2-3c6f-417a-9f70-0953cdf4181f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.