Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 3 | art. no. e136
Tytuł artykułu

Structural effects and real strain‑rate effects on compressive strength of sustainable concrete with crumb rubber in split Hopkinson pressure bar tests

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dynamic increase factor (DIF) of the concrete material strength, obtained using a split Hopkinson pressure bar (SHPB), includes structural effects that do not precisely reflect the real strain-rate effect of concrete. To further clarify the real strain-rate effects of rubberised concrete (RC), an experimental investigation regarding the dynamic compressive response of ordinary concrete (NC) and RC with three rubber contents (10%, 20%, and 30%) was performed in this study. Additionally, based on a dynamic constitutive model, i.e., the Karagozian and Case (K&C) concrete model, numerical SHPB tests were conducted using the LS-DYNA software. According to the experimental results, all parameters of the K&C model were discussed, and the damage factors were modified to satisfy the mechanical properties of RC. After validating the numerical model, it was observed that the experimental DIF included the inertial enhancement and the real DIF. Moreover, because rubber particles effectively reduce the density and improve the deformation capacity of concrete, the real strain-rate effect of RC was found to be more rate-sensitive than that of NC by analysing the radial stress distribution. In addition to lateral inertia, another external source, namely, the interface friction between the specimen and bars, which can produce lateral confinement, was further studied. It was found that interface friction significantly contributes to lateral confinement; however, as the strain rate increased, the impact generally decreased. Finally, the mechanism of the strain-rate effect of RC was clarified.
Wydawca

Rocznik
Strony
art. no. e136
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
autor
  • College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
  • Guangdong Lingnan Township Green Building Industrialization Engineering Technology Research Center, Guangzhou 510225, China
  • Institute of Sustainable Building and Energy Conservation of Zhongkai University of Agricultural Engineering, Guangzhou 510225, China
autor
  • College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China, ryan.twain@zhku.edu.cn
  • Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, China
  • Guangdong Lingnan Township Green Building Industrialization Engineering Technology Research Center, Guangzhou 510225, China
  • Institute of Sustainable Building and Energy Conservation of Zhongkai University of Agricultural Engineering, Guangzhou 510225, China
autor
  • College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
autor
  • College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
  • College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
  • Guangdong Lingnan Township Green Building Industrialization Engineering Technology Research Center, Guangzhou 510225, China
  • Institute of Sustainable Building and Energy Conservation of Zhongkai University of Agricultural Engineering, Guangzhou 510225, China
Bibliografia
  • 1. Xiong Z, Fang Z, Feng WH, Liu F, Yang F, Li LJ. Review of dynamic behaviour of rubberised concrete at material and member levels. J Build Eng. 2021;38: 102237. https://doi.org/10.1016/j.jobe.2021.102237.
  • 2. Khan I, Shahzada K, Bibi T, Ahmed A, Ullah H. Seismic performance evaluation of crumb rubber concrete frame structure using shake table test. Structures. 2021;30:41-9. https://doi.org/10.1016/j.istruc.2021.01.003.
  • 3. Liu F, Meng LY, Ning GF, Li LJ. Fatigue performance of rubber-modified recycled aggregate concrete (RRAC) for pavement. Constr Build Mater. 2015;95:207-17.
  • 4. Si RZ, Guo SC, Dai QL. Durability performance of rubberized mortar and concrete with NaOH-solution treated rubber particles. Constr Build Mater. 2017;153:496-505. https://doi.org/10.1016/j.conbuildmat.2017.07.085.
  • 5. Mousa MI. Effect of elevated temperature on the properties of silica fume and recycled rubber-filled high strength concretes (RHSC). HBRC J. 2017;13:1-7. https://doi.org/10.1016/j.hbrcj.2015.03.002.
  • 6. Wang LL. Foundations of stress waves. Oxford: Elsevier; 2007.
  • 7. Guo YB, Gao GF, Jing L, Shim VPW. Response of high-strength concrete to dynamic compressive loading. Int J Impact Eng. 2017;108:114-35. https://doi.org/10.1016/j.ijimpeng.2017.04.015.
  • 8. Song YP. Dynamic constitutive models and yield criteria for concrete. Beijing: Science Press; 2013.
  • 9. Zhang X, Yang ZJ, Huang YJ, Wang ZY, Chen XW. Micro CT image-based simulations of concrete under high strain rate impact using a continuum-discrete coupled model. Int J Impact Eng. 2021;149: 103775. https://doi.org/10.1016/j.ijimpeng.2020.103775.
  • 10. Eibl J, Schmidt-Hurtienne B. Strain-rate-sensitive constitutive law for concrete. J Eng Mech ASCE. 1999;125:1411-20. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:12(1411).
  • 11. Liu F, Chen GX, Li LJ, Guo YC. Study of impact performance of rubber reinforced concrete. Constr Build Mater. 2012;36:604-16. https://doi.org/10.1016/j.conbuildmat.2012.06.014.
  • 12. Feng WH, Liu F, Yang F, Jing L, Li LJ, Li HZ, Chen L. Compressive behaviour and fragment size distribution model for failure mode prediction of rubber concrete under impact loads. Constr Build Mater. 2021;273: 121767. https://doi.org/10.1016/j.conbuildmat.2020.121767.
  • 13. Feng WH, Tang YC, He WM, Wei WB, Yang YM. Mode I dynamic fracture toughness of rubberised concrete using a drop hammer device and split Hopkinson pressure bar. J Build Eng. 2022;48: 103995. https://doi.org/10.1016/j.jobe.2022.103995.
  • 14. Li QM, Lu YB, Meng H. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part II: numerical simulations. Seventh Int Conf Shock Impact Loads Struct. 2009;36:1335-45. https://doi.org/10.1016/j.ijimpeng.2009.04.010.
  • 15. Lee S, Kim KM, Park J, Cho JY. Pure rate effect on the concrete compressive strength in the split Hopkinson pressure bar test. Int J Impact Eng. 2018;113:191-202. https://doi.org/10.1016/j.ijimpeng.2017.11.015.
  • 16. Flores-Johnson EA, Li QM. Structural effects on compressive strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int J Impact Eng. 2017;109:408-18. https://doi.org/10.1016/j.ijimpeng.2017.08.003.
  • 17. Chen T, Li QB, Guan JF. Effect of radial inertia confinement on dynamic compressive strength of concrete in SHPB tests. In: Civ eng archit sustain infrastruct II. Switzerland: Trans Tech Publications; 2013. p. 215-9. https://doi.org/10.4028/www.scientific.net/AMM.438-439.215.
  • 18. Yang F, Feng WH, Liu F, Jing L, Yuan B, Chen D. Experimental and numerical study of rubber concrete slabs with steel reinforcement under close-in blast loading. Constr Build Mater. 2019;198:423-36. https://doi.org/10.1016/j.conbuildmat.2018.11.248.
  • 19. Malvar LJ, Crawford JE, Wesevich JW, Simons D. A plasticity concrete material model for DYNA3D. Int J Impact Eng. 1997;19:847-73. https://doi.org/10.1016/S0734-743X(97)00023-7.
  • 20. Johnson GR, Holmquist TJ. A computational constitutive model for brittle materials subjected to large strains, high strain rates and high pressures. In: Shock Wave High-Strain-Rate Phenomena in Materials. Boca Raton: CRC Press; 1992. pp. 1075-1081.
  • 21. Sanchidrian JA, Pesquero JM, Garbayo E. Damage in rock under explosive loading: Implementation in DYNA2D of a TCK model. Int J Surf Min Reclam Environ. 1992;6:109-14. https://doi.org/10.1080/09208119208944324.
  • 22. Teng TL, Chu YA, Chang FA, Shen BC, Cheng DS. Development and validation of numerical model of steel fiber reinforced concrete for high-velocity impact. Comput Mater Sci. 2008;42:90-9. https://doi.org/10.1016/j.commatsci.2007.06.013.
  • 23. Wang ZL, Konietzky H, Huang RY. Elastic-plastic-hydrodynamic analysis of crater blasting in steel fiber reinforced concrete. Theor Appl Fract Mech. 2009;52:111-6. https://doi. org/10.1016/j.tafmec.2009.08.005.
  • 24. Kong XZ, Fang Q, Chen L, Wu H. A new material model for concrete subjected to intense dynamic loadings. Int J Impact Eng. 2018;120:60-78. https://doi.org/10.1016/j.ijimpeng.2018.05.006.
  • 25. Wang Z, Li Y, Shen RF, Wang JG. Numerical study on craters and penetration of concrete slab by ogive-nose steel projectile. Comput Geotech. 2007;34:1-9. https://doi.org/10.1016/j.compgeo.2006.09.001.
  • 26. Li J, Wu CQ, Hao H. An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads. Mater Des. 2015;82:64-76. https://doi.org/10.1016/j.matdes.2015.05.045.
  • 27. Wu J, Li L, Du X, Liu X. Numerical study on the asphalt concrete structure for blast and impact load using the Karagozian and case concrete model. Appl Sci. 2017;7:202. https://doi.org/10.3390/app7020202.
  • 28. Feng W, Chen B, Yang F, Liu F, Li L, Jing L, Li H. Numerical study on blast responses of rubberized concrete slabs using the Karagozian and Case concrete model. J Build Eng. 2021;33: 101610. https://doi.org/10.1016/j.jobe.2020.101610.
  • 29. Chinese standard (2011) GB/T 14864: sand for construction.
  • 30. Chinese standard (2020) JTG 3420: test methods of cement and concrete for highway engineering.
  • 31. Chinese standard (2019) GB/T 50081: standard for test methods of concrete physical and mechanical properties.
  • 32. Lu FY, Lin YL, Wang XY, Lu L, Chen R. A theoretical analysis about the influence of interfacial friction in SHPB tests. Int J Impact Eng. 2015;79:95-101. https://doi.org/10.1016/j.ijimpeng.2014.10.008.
  • 33. Lu Y, Li Q. A correction methodology to determine the strain-rate effect on the compressive strength of brittle materials based on SHPB testing. Int J Prot Struct. 2011;2:127-38. https://doi.org/10.1260/2041-4196.2.1.127.
  • 34. Xiao J, Li L, Shen L, Poon CS. Compressive behaviour of recycled aggregate concrete under impact loading. Cem Concr Res. 2015;71:46-55. https://doi.org/10.1016/j.cemconres.2015.01.014.
  • 35. Xiong BB, Demartino C, Xu J, Simi A, Marano GC, Xiao Y. High-strain rate compressive behavior of concrete made with substituted coarse aggregates: recycled crushed concrete and clay bricks. Constr Build Mater. 2021;301: 123875. https://doi.org/10.1016/j.conbuildmat.2021.123875.
  • 36. Tedesco JW, Ross CA. Strain-rate-dependent constitutive equations for concrete. J Press Vessel Technol. 1998;120:398-405.
  • 37. Gary G, Bailly P. Behaviour of quasi-brittle material at high strain rate. Experiment and modelling. Eur J Mech-A Solids. 1998;17:403-20.
  • 38. Ross CA, Jerome DM, Tedesco JW, Hughes ML. Moisture and strain rate effects on concrete strength. ACI Mater J. 1996;93:293-300.
  • 39. Li M, Hao H, Cui J, Hao YF. Numerical investigation of the failure mechanism of cubic concrete specimens in SHPB tests. Def Technol. 2021;18(1):1-11. https://doi.org/10.1016/j.dt.2021.05.003.
  • 40. Grote DL, Park SW, Zhou M. Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization. Int J Impact Eng. 2001;25:869-86. https://doi.org/10.1016/S0734-743X(01)00020-3.
  • 41. Al-Salloum Y, Almusallam T, Ibrahim SM, Abbas H, Alsayed S. Rate dependent behavior and modeling of concrete based on SHPB experiments. Cem Concr Compos. 2015;55:34-44. https://doi.org/10.1016/j.cemconcomp.2014.07.011.
  • 42. Li LJ, Tu GR, Lan C, Liu F. Mechanical characterization of waste-rubber-modified recycled-aggregate concrete. J Clean Prod. 2016;124:325-38. https://doi.org/10.1016/j.jclepro.2016.03.003.
  • 43. Pham TM, Chen W, Khan AM, Hao H, Elchalakani M, Tran TM. Dynamic compressive properties of lightweight rubberized concrete. Constr Build Mater. 2020;238: 117705. https://doi.org/10.1016/j.conbuildmat.2019.117705.
  • 44. Gao GF. Effect of strain-rate hardening on dynamic compressive strength of plain concrete. Chin J High Press Phys. 2017;31:261-70. https://doi.org/10.11858/gywlxb.2017.03.007.
  • 45. Comite Euro-International du Beton (2011) CEB-FIP Model Code 2010.
  • 46. Lin X. Numerical simulation of blast responses of ultra-high performance fibre reinforced concrete panels with strain-rate effect. Constr Build Mater. 2018;176:371-82. https://doi.org/10.1016/j.conbuildmat.2018.05.066.
  • 47. Zhang F, Shedbale AS, Zhong R, Poh LH, Zhang MH. Ultra-high performance concrete subjected to high-velocity projectile impact: implementation of K&C model with consideration of failure surfaces and dynamic increase factors. Int J Impact Eng. 2021;155: 103907. https://doi.org/10.1016/j.ijimpeng.2021.103907.
  • 48. Gholampour A, Ozbakkaloglu T, Hassanli R. Behavior of rubberized concrete under active confinement. Constr Build Mater. 2017;138:372-82. https://doi.org/10.1016/j.conbuildmat.2017.01.105.
  • 49. Kong XZ, Fang Q, Li QM, Wu H, Crawford JE. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact. Int J Impact Eng. 2017;108:217-28. https://doi.org/10.1016/j.ijimpeng.2017.02.016.
  • 50. Alanon A, Cerro-Prada E, Vazquez-Gallo MJ, Santos AP. Mesh size effect on finite-element modeling of blast-loaded reinforced concrete slab. Eng Comput. 2018;34:649-58. https://doi.org/10.1007/s00366-017-0564-4.
  • 51. Wang GS, Lu DC, Du XL. Research on the actual dynamic strength and the rate effect mechanisms for concrete materials. Eng Mech. 2018;35:28-67. https://doi.org/10.6052/j.issn.1000-4750.2017.02.0101.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-df577685-d467-4f84-b761-122782f9431d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.