Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 21, no. 2 | 153--170
Tytuł artykułu

Ideal Specific Impulse of Solid Rocket Propellants Based on AP/GAP/closo-Dodecaborate ([B12H12]2‒) Salts

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Elemental boron (B) is an exciting high-energy substance and falls into the group of metalloid chemical elements. It possesses the second-highest calorific value among elements fit for use in the production of propellants and explosives. However, practical applications of B come upon challenges related to ignition and combustion due to the formation of a B2O3 layer on its surface. Elemental B does not readily combust; it necessitates high-purity oxygen for the combustion process and tends to clump, leading to incomplete combustion. To address these issues, this study explores the use of closo-dodecaborate salts ([B12H12]2‒) as an alternative to B powder. The investigation focuses on three solid rocket propellant formulations incorporating closo-dodecaborate salts, with ammonium perchlorate (AP) as the oxidizer and GAP as the binder. The EXPLO5 code version V6.03 was employed to calculate the ideal specific impulse (Isp). The incorporation of closododecaborate salts in the propellant composition demonstrates major potential, and the AP/GAP/closo-dodecaborate salt formulations exhibit competitive theoretical performance, mainly in the context of low metalized compositions.
Wydawca

Rocznik
Strony
153--170
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
  • Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Centre of Excellence, University of Hyderabad, Hyderabad-500046, India
  • High Energy Materials Research Laboratory (HEMRL), Defence Research & Development Organization, Sutarwadi, Pune-411021, India, chemistryanesh@gmail.com
Bibliografia
  • [1] Pang, W.; Fan, X.; Lv, K. The Physicochemical Properties of Boron Powder and Its Application Progress in Fuel Rich Solid Propellant. (in Chinese) J. Winged Missiles 2009, 10: 58-62;
  • [2] Han, L.; Wang, R.; Chen, W.; Wang, Z.; Zhu, X.; Huang, T. Preparation and Combustion Mechanism of Boron-Based High-Energy Fuels. Catalysts 2023, 13(2): 378-394; https://doi.org/10.3390/catal13020378.
  • [3] Pace, K.K.; Jarmowycz, T.A.; Kuo, K.K. Effect of Magnesium-coated Boron Particles on Burning Characteristics of Solid Propellants in High-rate Cross-Flows. In: Combustion of Boron-Based Solid Propellant and Solid Fuels. (Kuo, K.K.; Pein, R., Eds.), Begell House & CRC Press, New York, 1993, pp. 332-346; ISBN 9780849399190.
  • [4] Davis, A. Solid Propellants: The Combustion of Particles of Metal Ingredients. Combust. Flame 1963, 7: 359-367; https://doi.org/10.1016/0010-2180(63)90212-8.
  • [5] Pang, W.; Fan, X. Application Progress of Metal Fuels in Solid Propellants. Chem. Propellants Polym. Mater. 2009, 7: 1-6;
  • [6] DeLuca, L.T.; Shimada, T.; Sinditskii, V.P.; Calabro, M.; Manzara, A.P. An Introduction to Energetic Materials for Propulsion. In: Chemical Rocket Propulsion. (De Luca, L.; Shimada, T.; Sinditskii, V.; Calabro, M., Eds) Springer Aerospace Technology. Springer, Cham; 2017, pp. 3-59; ISBN 978-3-319-27748-6; https://doi.org/10.1007/978-3-319-27748-6_1.
  • [7] Tang, S. Q.; Ding, H.X. Boron Hydrides as Solid Propellant Burning Rate Modifiers of the Latest Progress. (in Chinese) J. Propuls. Technol. 1983, 4: 35-49.
  • [8] Hong, Z.X.; Pang, W.Q.; DeLuca, L.T.; Zhao, Y. High-energy Combustion Agents of Organic Borohydrides: Synthesis, Characterization and Applications. United Kingdom, CPI group (UK) Ltd, Croydon CR0, 4YY, UK, 2023, pp. 163-189; ISBN: 9781839167133.
  • [9] Zheng, Y.Y.; Wang, M.W. High Burning Rate Modifiers-Polyhedral Boron Hybrid. (in Chinese) Chin. J. Explo. Propellants 1989, 12(3): 32.
  • [10] Kumar, V.Y.; Rathi, N.; Ramakrishna, P.A. Solid Fuel-rich Propellant Development for use in a Ramjet to Propel an Artillery Shell. Defence Sci. J. 2020, 70: 329-335; https://doi.org/10.14429/dsj.70.15061.
  • [11] Suceska, M. EXPLO5, version 6.03. 2014.
  • [12] Rao, M.H.; Muralidharan, K. Syntheses, Characterization and Energetic Properties of closo-(B12H12)2‒ Salts of Imidazolium Derivatives. Dalton. Trans. 2013, 42(24): 8854-8860; https://doi.org/10.1039/C3DT32834A.
  • [13] Rao, M.H.; Muralidharan, K. Closo-Dodecaborate (B12H12)2‒ Salts with Nitrogen Based Cations and Their Energetic Properties. Polyhedron 2016, 115; 105-110; http://dx.doi.org/10.1016/j.poly.2016.03.062.
  • [14] Zhao, X.; Yang, Z.; Chen, H.; Wang, Z.; Zhou, X.; Zhang, H. Progress in Three- dimensional Aromatic-like closo-Dodecaborate. Coord. Chem. Rev. 2021, 444; paper 214042.
  • [15] DeLuca, L.T. Innovative Solid Formulations for Rocket Propulsion. Eurasian Chem.-Technol. J. 2016, 18(Special issue): 181-196; http://dx.doi.org/10.18321/ectj424.
  • [16] Rao, M.H. Computational Determination of Specific Impulse of Solid Rocket Propellant Composition of closo-Dodecaborate ([B12H12]2‒) Salts with HTPB Binder and Ammonium Perchlorate as an Oxidizer. Cent. Eur. J. Energ. Mater. 2023, 20(4): 386-399; http://doi.org/10.22211/cejem/176917.
  • [17] Chaturvedi, S.; Dave, P.N. Solid Propellants: AP/HTPB Composite Propellants. Arabian J. Chem. 2019, 12(8): 2061-2068; https://doi.org/10.1016/j.arabjc.2014.12.033.
  • [18] Boshra, I.K.; Elbeih, A.; Mostafa, H.E. Composite Solid Rocket Propellant Based on GAP Polyurethane Matrix with Different Plasticizers, IOP Conf. Ser.: Mater. Sci. Eng. 2019, 610: paper 012037; https://doi.org/10.1088/1757-899X/610/1/012037.
  • [19] Pang, W.; Fan, X. Progress in Application of Metal Fuel in Solid Propellants. Chem. Propellants Polym. Mater.2009, 7(2): 1-5.
  • [20] Pang, W.; Li, Y.; DeLuca, L.T.; Liang, D.; Qin, Z.; Liu, X.; Xu, H.; Fan, X. Effect of Metal Nanopowders on the Performance of Solid Rocket Propellants: A Review. Nanomaterials 2021, 11(10): 2749; https://doi.org/10.3390/nano11102749.
  • [21] Trache, D.; Klapötke, T.M.; Maiz, L.; Abd-Elghany, M.; DeLuca, L.T. Recent Advances in New Oxidizers for Solid Rocket Propulsion. Green Chem. 2017, 19: 4711-4736.
  • [22] Benhammada, A.; Trache, D. Thermal Decomposition of Energetic Materials Using TG-FTIR and TG-MS: A State-of-the-art Review. Appl. Spectrosc. Rev. 2020, 55(8): 724-777; https://doi.org/.1080/05704928.2019.1679825.
  • [24] Yuan-jun, Z. Progress in the Research of Metal Propellants. J. Propuls. Technol. 1981, 3: 66-68.
  • [25] Lysien, K.; Stolarczyk, A.; Jarosz, T. Solid Propellant Formulations: A Review of Recent Progress and Utilized Components Materials. Materials 2021, 14(21): 6657; https://doi.org/10.3390/ma14216657.
  • [26] Wei, Z.; Hui, Z.; Ding-qiu, F. Technical Approaches to Improve the Combustion Characteristics of High Energy Fuel Rich Propellants with Boron Particles. Chin. J.Energ. Mater. 1998, 6(4): 179-182.
  • [27] Pang, W.Q.; Richard, A.Y.; DeLuca, L.T.; Vladimir, Z.; Gany, A.; Xiao-Hong, Z. Boron-based Composite Energetic Materials (B-CEMs): Preparation, Combustion and Applications. Prog. Energy Combust. Sci. 2022, 93: paper 101038; https://doi.org/10.1016/j.pecs.2022.101038.
  • [28] Gany, A. Combustion of Boron-containing Fuels in Solid Fuel Ramjets. Int. J. Energ. Mater. Chem. Propuls. 1993, 1-6: 91-112; https://doi.org/10.1615/ IntJEnergeticMaterialsChemProp.v2.i1-6.40
  • [29] Pang, W.Q.; Jiao-qiang, Z.; Qiong-fang, Z.; Song-qi, H.; Ji-ying, G. Coating of Boron Particles and Combustion Residue Analysis of Boron-based Solid Propellants. J. Solid Rocket Technol. 2006, 12(2): 204-207.
  • [30] Tai-Kang, L.; Song-Ping, L.; Huey-Cherng, P. Effect of Boron Particle Surface Coating on Combustion of Solid Propellants for Ducted Rockets. Propellants Explos. Pyrotech. 1991, 16: 156-166; https://doi.org/10.1002/prep.19910160403.
  • [31] Yang, P. Research on the Combustion of Metal Fuel in Solid Ramjet. J. Propuls. Technol. 1986, 5: 76-79.
  • [32] Gany, A.; David, W.N. Combustion Studies of Metallized Fuels for Solid-fuel Ramjets. J. Propul. Power 1986, 2: 423-427; https://doi.org/10.2514/3.22924.
  • [33] Koch, C.C.; Scattergood, R.O.; Youssef, K.M.; Chan, E.; Zhu, Y.T. Nanostructured Materials by Mechanical Alloying: New Results on Property Enhancement. J. Mater. Sci. 2010, 45: 4725-4732; https://doi.org/10.1007/s10853-010-4252-7.
  • [34] Hong-jie, F.; Ning-fei, W.; Da-lin, G. Study on the Combustion Characteristics of Boron Solid Propellant Coated with GAP. J. Propuls. Technol. 2002, 23(3): 262-264.
  • [35] Ing-Ming, S.; Tai-Kang, L. Combustion Characteristics of GAP-coated Boron Particles and the Fuel-rich Solid Propellant. Combust. Flame 1995, 100: 634-644; https://doi.org/10.1016/0010-2180(94)00032-N.
  • [36] Pang, W.; Fan, X., Hui-xiang, X.; Guo-qiang, W.; Yong-hong, L. Application of Amorphous Boron Agglomerated with Hydroxyl Terminated Polybutadiene in Fuel Rich Solid Propellant. Propellants Explos. Pyrotech. 2011, 36: 360-366; https://doi.org/10.1002/prep.200900112.
  • [37] Jadhav, P.M.: Patil, J.; Prasanth, H.; Rao, G. Ammonium Dodecahydrododecaborate (NH4)2[B12H12]: Hydrogen and Boron Rich Fuel for Jet Propulsion Engines. Cent. Eur. J. Energ. Mater. 2022, 19(2): 158-167; https://doi.org/10.22211/cejem/151579.
Uwagi
PL
Brak poz. 23 w bibliogr.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-df475aef-7766-48b5-a438-7391522143b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.