Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 23, iss. 2 | 97--106
Tytuł artykułu

Artificial Neural Network Technique for Estimating the Thermo-Physical Properties of Water-Alumina Nanofluid

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With its superior thermo-physical characteristics to the carrier fluid, nanofluid is the most impactful heat transfer fluid. Thermal conductivity, density, viscosity, specific heat, coefficient of volumetric expansion, and other thermo-physical parameters play an important part in the thermal management of any heat transfer application. This thermal management governs the service life of an equipment or apparatus, which dissipates heat during its operation. If the equipment is well-managed thermally, then its service life will be extended. Otherwise the equipment stops functioning due to excess heat. Thermo-physical properties of nanofluid vary with the change in the concentration of nanoparticles. Estimation of the properties with the varying concentrations of the nanoparticles is time consuming and is economically not viable. There were many empirical models available in the literature for determining the thermo-physical properties of nanofluids. However, each model provides different values of thermo-physical properties and choosing the best model among the models available is a complex task. In this regard, to avoid the complication in choosing the best model, and in order to envisage the thermo-physical properties of the nanofluid, the Artificial Neural Network (ANN) technique was used. This technique is widely used among the researchers for various applications. The ANN approach was utilized in this work to estimate viscosity and thermal conductivity of water-based Al2O3 nanofluid for volume fractions between 0.01% and 0.1%. For thermal conductivity, mean square error (MSE) was observed as 4.504e-09 and for viscosity, it was observed as 6.4742e-09. Training times were 5 seconds and 4 seconds for thermal conductivity and viscosity datasets, respectively.
Wydawca

Rocznik
Strony
97--106
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • GMR Institute of Technology, Rajam-Srikakulam District, 532 127, Andhra Pradesh, India
  • Department of Mechanical Engineering, CMR College of Engineering & Technology, Kandlakoya, Medchal Road, Hyderabad, 501 401, Telangana, India, varmamtech2005@gmail.com
  • Department of Mechanical Engineering, Aditya College of Engineering & Technology, Surampalem, AP 533437, India
Bibliografia
  • 1. Abdolbaqi M.K., Sidik N.A.C., Rahim M.F.A., Mamat R., Azmi W.H M.N.A.W.M. 2016. Experimental investigation and development of new correlation for thermal conductivity and viscosity of Bio Glycol/water based SiO2 Nano fluids”. International Communications in Heat and Mass Transfer, 77, 54–63.
  • 2. Bakthavatchalam S., Saha B. 2020. Influence of solvents on the enhancement of thermo-physical properties and stability of MWCNT Nano fluid. Journal of Nanotechnology, 21(20), 200–210.
  • 3. Chandrasekar M., Suresh S., Bose A.C. 2010. Experimental investigations and theoretical determination of viscosity and thermal conductivity of Al2O3/water Nano fluid. Experimental Thermal and Fluid Science, 34(2), 210–216.
  • 4. Durgam S., Kadam G. 2019. Thermal conductivity and viscosity of fluid. Journal of Thermal Properties, 10(4), 1–16.
  • 5. Humphrey A., Osho I.W., Eric C.O., Olusola B., Mustafa D., Serken A. 2020. A neural network based predictive model for thermal conductivity of hybrid nanofluids. International Communications in Heat and Mass Transfer, 119(104930), 1–14.
  • 6. Krishna Varma K.P.V., Chakravarthi N., Raj Kumar Nayak M. 2018. Optimization of Process Parameters of an Engine Radiator Using Taguchi Method. Global Journal of Engineering Science and Researches, 161–170.
  • 7. Krishna Varma K.P.V., Kishore P.S., Durga Prasad P.V. 2017. Enhancement of heat transfer using Fe3O4/water nanofluid with varying cut-radius twisted tape inserts. International Journal of Applied Engineering Research, 12(18), 7088–7095.
  • 8. Li X., Zou C., Zhou L., Aihua Qi A. 2016. Experimental study on the thermo-physical properties of diathermic oil based SiC Nano fluids for high temperaturę applications. International Journal of Heat and Mass Transfer, 97, 631–637.
  • 9. Mahbubul I.M., Saidur R., Amalina M.A., Elcioglu E.B., Okutucu-Ozyurt T. 2015. Effective ultra-sonication process for better colloidal dispersion of Nano fluid. Ultrasonics Sonochemistry, 26, 361–369.
  • 10. Meijuan C. 2021. Application of ANN Technique to predict the thermal conductivity of nanofluids: a review. Journal of Thermal Analysis and Calorimetry, 145, 2021–2032.
  • 11. Mohammad H.E., Davood T. 2021. An optimal feed-forward artificial neural network model and a new empirical correlation for prediction of the relative viscosity of Al2O3-engine oil nanofluid. Scientific Reports, 11(17022), 1–14.
  • 12. Mohan S.S.K., Bhatti S.K., Varma K.P.V.K. 2017. CFD analysis of rectangular jet impingement heat transfer on flat plate using nanofluids. CMR Journal of Engineering and Technology, 2(1), 20–28.
  • 13. Murshed S., Leong K., Yang C. 2008. Investigations of viscosity and thermal conductivity of Nano fluids. International Journal of Thermal Sciences, 47(5), 560–568.
  • 14. Murshed S.M.S., Santos F.J.V., Nieto de Castro C.A. 2013. Investigations of viscosity of silicone oil-based semiconductor Nano fluids. Journal of Nano Fluids, 2, 261–266.
  • 15. Okonkwo E., Almanssara I.W., Al-Ansari T. 2020. The review of thermal properties. Journal of Thermal Analysis and Calorimetry, 14(6), 1–6.
  • 16. Raja Sekhar Y., K.V. Sharma. 2015. Study of viscosity and specific heat capacity characteristics of water-based Al2O3 Nano fluids at low particle concentrations”. Journal of Experimental Nanoscience, 10(2), 86–102.
  • 17. Ravi Babu S., Sammbasiva Rao G. 2018. Buoyancy induced natural convective heat transfer along a vertical cylinder using water-Al2O3 Nano fluids. ASME Journal of Thermal Science and Engineering applications, 10, 031005, 1–7.
  • 18. Sun Z., Chen Y., Li X., Qin X., Wang H. 2017. A Bayesian regularized artificial neural network for adaptive optics forecasting, Optical Communication, 382, 519–527.
  • 19. Syam Sundar L., Manoj K. 2013. Singh and Antonio C.M. Sousa. Investigation of thermal conductivity and viscosity of Fe3O4 Nanofluid for heat transfer applications. International Communications in Heat and Mass Transfer, 44, 7–14.
  • 20. Vakili M., Karami M., Delfani S., Khosrojerdi S. 2016. Experimental investigation and modeling of thermal radiative properties of f-CNTs Nano fluid by artificial neural network with Levenberg–Marquardt algorithm. International Communications in Heat and Mass Transfer, 78, 224–230.
  • 21. Wang X., Yan X., Gao N., Chen G. 2020. Prediction of thermal conductivity of various nanofluids with ethylene glycol using Artifical Neural Network, Journal of Thermal Science, 29, 1504–1512.
  • 22. Yaswanatha M.K., Venu Vinod A. 2020. Artificial neural network modelling on thermal conductivity of ethylene glycol. Journal of Thermal Analysis and Calorimetry, 14(5), 440–445.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-df3219b6-2cd4-48e5-85e2-b9ceefa14b33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.