Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | No. 65 (4) | 564--570
Tytuł artykułu

Excitation of an extreme wave by standing current

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The statistics suggest that extreme waves cause more damage in shallow waters and at the coast than in the deep sea. In the linear theory of the formation of extreme waves, their existence is interpreted as a local superposition of surface monochromatic waves. The event of excitation of extreme waves can be understood as an increase in natural oscillations of the water basin. The conditions for the excitation and sustaining of natural oscillations are the proximity of the periods of exciting traveling waves to the period of traveling waves and the speed of movement of the exciting current to the phase speed of propagation of traveling waves of the reservoir. Examples of stimulating natural oscillations are presented. We determined the range of expected periods of natural oscillations, which range from 30 seconds to 24 hours. Synchronously and in common-mode with the oscillations of standing waves between their antinodes, a "standing" current occurs with a measured speed of up to 11 km/h. We presented a hypothesis about the possibility of stimulating natural oscillations of water bodies by a standing current, which changes its direction due to the movement of the water surface from the trough of the wave to its crest, and back. A model of stimulating oscillations by the waves with a constant period and currents with constant and variable speeds has been developed.
Wydawca

Czasopismo
Rocznik
Strony
564--570
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
  • Department of Infrastructure Systems, National Power Company "Ukrenergo", Kyiv, Ukraine, anakhov@i.ua
Bibliografia
  • 1. Anakhov, P.V., 2021. Excitation of rogue wave by natural oscillations of the water body. Hydrology, Hydrochem. Hydroecol. 1, 106-114, (in Ukrainian). https://doi.org/10.17721/2306-5680.2021.1.10
  • 2. Arsen’eva, N.M., Davydov, L.K., Dubrovina, L.N., Konkina, N.G., 1963. Seiches on the lakes of the USSR. Leningrad Univ., Leningrad, 184 pp. (in Russian).
  • 3. Boegman, L., 2009. Currents in Stratified Water Bodies 2: Internal Waves. In: Likens, G.E. (Ed.), Encyclopedia of Inland Waters Vol. 1. Elsevier, Oxford, 539-558.
  • 4. Bowers, D.G., Macdonald, R.G., McKee, D., Nimmo-Smith, W.A.M., Graham, G.W., 2013. On the formation of tide-produced seiches and double high waters in coastal seas. Estuar. Coast. Shelf Sci. 134, 108-116. https://doi.org/10.1016/j.ecss.2013.09.014
  • 5. Didenkulova, I.I., Pelinovsky, E.N., 2006. Phenomena similar to tsunami in Russian internal basins. RJES 8, ES6002. https://doi.org/10.2205/2006ES000211
  • 6. Dogan, G.G., Pelinovsky, E., Zaytsev, A., Metin, A.D., Tarakcioglu, G.O., Yalciner, A.C., Yalciner, B., Didenkulova, I., 2021. Long wave generation and coastal amplification due to propagating atmospheric pressure disturbances. Nat. Hazards. 106, 1195-1221. https://doi.org/10.1007/s11069-021-04625-9
  • 7. Forrester, W.D., 1983. Canadian Tidal Manual. Dept., Fisher. Oceans, Ottawa, 138 pp.
  • 8. Gao, J., Ji, C., Gaidai, O., Liu, Y., Ma, X., 2017. Numerical investigation of transient harbor oscillations induced by Nwaves. Coast. Eng. 125, 119-131. https://doi.org/10.1016/j.coastaleng.2017.03.004
  • 9. Gao, J., Ma, X., Dong, G., Chen, H., Liu, Q., Zang, J., 2021. Investigation on the effects of Bragg reflection on harbor oscillations. Coast. Eng. 170, 103977. https://doi.org/10.1016/j.coastaleng.2021.10397
  • 10. Gao, J., Ma, X., Zang, J., Dong, G., Ma, X., Zhu, Y., Zhou, L., 2020. Numerical investigation of harbor oscillations induced by focused transient wave groups. Coast. Eng. 158, 103670. https://doi.org/10.1016/j.coastaleng.2020.103670
  • 11. Gao, J., Zhou, X., Zhou, L., Zang, J., Chen, H., 2019. Numerical investigation on effects of fringing reefs on low-frequency oscillations within a harbor. Ocean Eng. 172, 86-95. https://doi.org/10.1016/j.oceaneng.2018.11.048
  • 12. Gylfadottir, S.S., Kim, J., Helgason, J.K., Brynjólfsson, S., 2017. The 2014 Lake Askja rockslide-induced tsunami: Optimization of numerical tsunami model using observed data. J. Geophys. Res.-Oceans. 122 (5), 4110-4122. https://doi.org/10.1002/2016JC012496
  • 13. Ivanov, K.E., Kobeko, P.P., Shulman, A.R., 1946. Deformation of ice cover during the movement of loads. J. Tech. Phys. 16, 257-262 (in Russian).
  • 14. Ivus, G.P., Raevskij, A.N., Kivganov, A.F., Gulyaev, E.N., Vorobyov, V.I., 1991. Specialized weather forecasts. Leningrad Hydrometeorol. Inst. Leningrad, 112 pp. (in Russian).
  • 15. Jueza, C., Navas-Montilla, A., 2022. Numerical characterization of seiche waves energy potential in river bank lateral embayments. Renew. Energ. 186 (1), 143-156. https://doi.org/10.1016/j.renene.2021.12.125
  • 16. Kinsman, B., 1965. Wind waves: their generation and propergation on the ocean surface. Prentice-Hall, Englewood Cliffs, New Jersey, 676 pp.
  • 17. Kodomari, S. , 1982. On the Studies of the Periodic Motions in a Lake (2): Effect of the Lake Basin Shape on the Periodic Motion. J. Fac. Sci., Hokkaido Univ., Ser. 7 (Geophysics), 185-226. https://doi.org/https://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/8736/1/7(2)_p185-226.pdf
  • 18. Kovalev, D., Kovalev, P., Borisov, A.S., Zarochintsev, V.S., Kirillov, K.V., 2022. Features of seiсhe excitation in the water area near Poronaisk (Sakhalin Island). Geosystems of Transition Zones. https://doi.org/10.30730/gtrz.2022.6.2.114-123.
  • 19. Kozin, V.M., 2007. Resonant method of breaking ice cover. Inventions and experiments. Acad. Natural Sci. Moscow, 355 pp. (in Russian).
  • 20. Labzovsky, N.A., 1971. Noncyclic sea level fluctuations. Gidrometeoizdat, Leningrad, 238 pp. (in Russian).
  • 21. Longuet-Higgins, M.S., 1953. Can Sea Waves Cause Microseisms? In: Symposium on Microseisms (4-6 September 1952). National Academy of Sciences, National Research Council, 74-86.
  • 22. Miller, D.J., 1960. Giant Waves in Lituya Bay Alaska. Geological survey professional paper 354-C. United States Government Printing Office, Washington, 86 pp.
  • 23. Nikolkina, I., Didenkulova, I., 2011. Rogue waves in 2006-2010. Nat. Hazards Earth Syst. Sci. 11 (11), 2913-2924. https://doi. org/10.5194/nhess-11-2913-2011
  • 24. Rabinovich, A.B., 2009. Seiches and Harbor Oscillations. In: Kim, Y.C. (Ed.), Handbook of Coastal and Ocean Engineering. World Scientific Publ., Singapoure, 193-236. https://doi.org/10.1142/9789812819307_0009
  • 25. Shevchenko, G.V., 2006. Dynamic processes on the shelf and the forecast of marine hazardous phenomena (on the example of Sakhalin island). Institute of Marine Geology and Geophysics Farastern Branch, Russian Acad. Sci., Vladivostok, 34 pp. (in Russian).
  • 26. Shuleykin, V.V., 1968. Marine physics, 4th edn., Nauka, Moscow, 1083 pp. (in Russian).
  • 27. Sudol’skij, A.S., 1991. Dynamic phenomena in reservoirs. Gidrometeoizdat, Leningrad, 263 pp. (in Russian).
  • 28. Titov, L.F., 1971. Wind-Driven Waves. [Translated from Russian by D. Lederman; edited by P. Greenberg]. Israel Program for Scientific Translations, Springfield, Va., Jerusalem, 244.
  • 29. Vilibić, I., Rabinovich, A.B., Anderson, E.J., 2021. Special issue on the global perspective on meteotsunami science: editorial. Nat. Hazards. 106, 1087-1104. https://doi.org/10.1007/s11069-021-04679-9
  • 30. Ward, S.N., Day, S., 2011. The 1963 Landslide and Flood at Vaiont Reservoir Italy. A tsunami ball simulation. Ital. J. Geosci. 130 (f.1), 16-26. https://doi.org/10.3301/IJG.2010.21
  • 31. Zhang, J., Benoit, M., Kimmoun, O., Chabchoub, A., Hsu, H.-C., 2019. Statistics of Extreme Waves in Coastal Waters: Large Scale Experiments and Advanced Numerical Simulations. Fluids 4 (2)
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-df2ba442-1465-47a4-a019-d24feb2219e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.