Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 31, Fasc. 2 | 285--299
Tytuł artykułu

The asymptotics of L-statistics for non i.i.d. variables with heavy tails

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to study the asymptotic behaviour of linear combinations of order statistics (L-statistics)... [formula] for variables with heavy tails. The order statisticsXi:kn correspond to a non i.i.d. triangular array (Xi,n)1≤i≤kn of infinitesimal and rowwise independent random variables. We give sufficient conditions for the convergence of L-statistics to non-normal limit laws and it is shown that only the extremes contribute to the limit distribution, whereas the middle parts vanish. As an example we consider the case, where the extremal partial sums belong to the domain of attraction of a stable law.We also study L-statistics with scores defined by ci,n := J(i/(n + 1)) with a regularly varying function J, a case which has often been treated in the literature.
Wydawca

Rocznik
Strony
285--299
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
autor
autor
Bibliografia
  • [1] P. J. Bickel, Some contributions to the theory of order statistics, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. I (1968), pp. 575-591.
  • [2] P. Billingsley, Convergence of Probability Measures, Wiley Ser. Probab. Stat., New York 1968.
  • [3] R. M. Dudley, Real Analysis and Probability, Cambridge Univ. Press, Cambridge 2007.
  • [4] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, second edition, Wiley, New York-London 1971.
  • [5] B. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Reading, MA, 1968.
  • [6] J. Hájek, Asymptotic normality of simple linear rank statistics under alternatives, Ann. Math. Statist. 39 (1968), pp. 325-346.
  • [7] R. Helmers and F. H. Ruymgaart, Asymptotic normality of generalized L-statistics with unbounded scores, J. Statist. Plann. Inference 19 (1988), pp. 43-53.
  • [8] A. Janssen, The domain of attraction of stable laws and extreme order statistics, Probab. Math. Statist. 10 (1989), pp. 205-222.
  • [9] A. Janssen, Sums of independent triangular arrays and extreme order statistics, Ann. Probab. 22 (1994), pp. 1766-1793.
  • [10] A. Janssen, Invariance principles for sums of extreme sequential order statistics attracted to Lévy processs, Stochastic Process. Appl. 85 (2000), pp. 255-277.
  • [11] L. Le Cam, Asymptotic Methods in Statistical Theory, Springer Ser. Statist., New York 1986.
  • [12] D. Li, M. B. Rao and R. J. Tomkins, The law of the iterated logarithm and central limit theorem for L-statistics, J. Multivariate Anal. 78 (2001), pp. 191-217.
  • [13] M. Loève, Ranking Limit Problem, in: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. 2 (1956), pp. 177-194.
  • [14] D. Mason and G. Shorack, Necessary and sufficient conditions for asymptotic normality of trimmed L-statistics, J. Statist. Plann. Inference 25 (1990), pp. 111-139.
  • [15] D. Mason and G. Shorack, Necessary and sufficient conditions for asymptotic normality of L-statistics, Ann. Probab. 20 (1992), pp. 1779-1804.
  • [16] M. Mitra and M. Z. Anis, An L-statistic approach to a test of exponentiality against IFR alternatives, J. Statist. Plann. Inference 138 (2008), pp. 3144-3148. Corrigendum, J. Statist. Plann. Inference 140 (2010), p. 1618.
  • [17] V. V. Petrov, Limit Theorems of Probability Theory, Clarendon Press, Oxford 1995.
  • [18] S. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer, New York 2004.
  • [19] F. H. Ruymgaart and M. C. A. van Zuijlen, Asymptotic normality of linear combinations of functions or order statistics in the non-I.I.D. case, Nederl. Akad. Wet. Proc., Ser. A 80 (1977), pp. 432-447.
  • [20] G. R. Shorack, Functions of order statistics, Ann. Math. Statist. 43 (1972), pp. 412-427.
  • [21] G. R. Shorack, Convergence of reduced empirical and quantile processes with application to functions of order statistics in the non-I.I.D. case, Ann. Statist. 1 (1973), pp. 146-152.
  • [22] G. R. Shorack and J. A. Wellner, Empirical processes with applications to statistics, Wiley Ser. Probab. Math. Stat., New York 1986.
  • [23] S. M. Stigler, Linear functions of order statistics with smooth weight functions, Ann. Statist. 2 (1974), pp. 676-693.
  • [24] A. V. Tchirina, Asymptotic properties of exponentiality tests based on L-statistics, Acta Appl. Math. 97 (2007), pp. 297-309.
  • [25] A. W. Van der Vaart, Asymptotic Statistics, Cambridge Univ. Press, Cambridge 1998.
  • [26] L. Viharos, Asymptotic distributions of linear combinations of extreme values, Acta Sci. Math. 58 (1993), pp. 211-231.
  • [27] L. Viharos, Limit theorems for linear combination of extreme values with applications to interference about the tail of a distribution, Acta Sci. Math. 60 (1995), pp. 761-777.
  • [28] L. Viharos, Asymptotic distributions of linear combinations of intermediate order statistics, Acta Math. Hungar. 72 (1996), pp. 177-189.
  • [29] H. Witt ing and U. Müller-Funk, Mathematische Statistik II, B. G. Teubner, Stuttgart 1995.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-df2867d0-4423-461c-97e1-5bdf8105e5c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.