Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 23, iss. 6 | 42--52
Tytuł artykułu

Changes in the Structure of Myco- and Microbiocenosis of Soil with Use of Fungi and Bacteria Strains Immobilized on Biochar as an Example of Ecosystem Maintenance Services

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During recent decades the importance of ecosystems management services and maintenance have became paramount. We have proposed and implemented the technology of mycocenosis regulation of the rhizosphere of walnut nursery plants. Biotechnology involves inoculation before planting the roots of tree plants with the mycorrhizal drug Mikovital, which contains strains of the fungus Tuber melanosporum VS 1223 and the ascomycete Vitasergia svidasoma. Also it was applied in the combination with Florabacillin, which contains live cells of the bacterium Bacillus subtilis. The introduction of the mycorrhizal remedy into the rhizosphere of the walnut contributed to the change of such ecological characteristics of mycocenoses as the length and biomass of the fungal mycelium and the number of spores. To increase the efficiency of mycorrhization, an immobilization medium biochar with fungi and bacteria was used (Mikovital + Florabacillin + biochar). After use of this soil improvement complex in the rhizosphere of plants, the length of fungal mycelium increased by 8–10 times, and biomass by 5–7 times, in comparison with the rhizosphere of walnut on the control plot. Based on the dominance indices we had seen a signifficant increase in species diversity, which confirms the positive effect of immobilization of fungal cells and bacteria on the biochar. Optimum concentrations of 0.2% biochar additive to the Mikovital. It also have reduced the number of pathogens in the rhizobiome of the treated plants. The created harmoniously functioning ecosystem of the nut nursery as the result of above experiments will provide further self-regulation of this local natural ecosystem, as evidenced by the development of plants, their appearance and growth, as well as previous studies in the hazelnut garden. Mechanisms for bioregulation of soil and plant ecosystems have effectively included the use of man-made technology to stimulate natural mechanisms.
Wydawca

Rocznik
Strony
42--52
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Department of Ecology, Ukrainian National Forestry University, Gen. Chuprynky Str. 134, Lviv, 79057, Ukraine, oliferchuk@nltu.edu.ua
  • Department of Molecular Genetics and Biotechnology, Institute of Cell Biology,National Academy of Sciences of Ukraine, Drahomanov Str. 14/16, Lviv, 79005, Ukraine
  • Department of Ecology, Ukrainian National Forestry University, Gen. Chuprynky Str. 134, Lviv, 79057, Ukraine
  • BM-Engineering, LLC, Pyrohovs’koho Oleksandra Str. 18, Kyiv, 03110, Ukraine
  • Explogen LLC, 20 Zelena Str., Lviv, 79053, Ukraine
autor
  • Explogen LLC, 20 Zelena Str., Lviv, 79053, Ukraine
  • Explogen LLC, 20 Zelena Str., Lviv, 79053, Ukraine
  • Department of Landscape Architecture, Garden and Park Management and Urban Ecology, Ukrainian National Forestry University, O. Kobylyanska Str. 1, Lviv, 79005, Ukraine
  • Department of Forestry and Botanical Research of the Botanical Garden, Ukrainian National Forestry University, Gen. Chuprynky Str. 103, Lviv, 79057, Ukraine
  • Department of Environmental Safety, Lviv State University of Life Safety, Kleparivska Str. 35, Lviv, 79007, Ukraine
Bibliografia
  • 1. Al-Askar A.A., Rashad, Y.M. 2010. Arbuscular mycorrhizal fungi: a biocontrol agent against common bean Fusarium root disease. Plant Pathol J., 9(1), 31–38. https://doi.org/10.3923/ppi.2010.31.38
  • 2. Anderson A.S., An Z., Strohl W.R. 2000. Polyketide Antibiotics. In Enciclopedia for Microbiology, Edited by J. Lederberg. San Diego: Academic Press, 3, 241–254.
  • 3. Beesley L., Moreno-Jiménez E., Gomez-Eyles J.L., Harris E., Robinson B. Sizmur T. 2011. A review of biochars‘ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut, 159(12), 3269–3282. https://doi.org/10.1016/j.envpol.2011.07.023
  • 4. Cameron K.C., Di H.J. Moir J.L. 2013. Nitrogen losses from the soil/plant system: a review. Annals of Applied Biology, 162, 145–173. https://doi.org/10.1111/aab.12014
  • 5. del Carmen Montero-Calasanz M., Hofner B., Göker M., Rohde M., Spröer C., Hezbri K., Gtari M., Schumann P., Klenk H.P. 2014. Geodermatophilus poikilotrophi sp. nov.: a multitolerant actinomycete isolated from dolomitic marble. BioMed research international, 2014, 914767. https://doi.org/10.1155/2014/914767
  • 6. Dias B.O., Silva C.A., Higashikawa F.S., Roig A. SanchezMonedero M.A. 2010. Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification. Bioresour Technol, 101(4), 1239–1246. https://doi.org/10.1016/j.biortech.2009.09.024
  • 7. Devi S.G., FathimaA.A., Radha S., Arunraj R., Curtis W.R., Ramya M. 2015. A rapid and economical method for efficient DNA extraction from diverse soils suitable for metagenomic applications. PLoS ONE, 10(7), e0132441. https://doi.org/10.1371/journal.pone.0132441
  • 8. Geltser F.Y., Ignatev N.N. 1989. Patent for invention № 921488 SU1521371A1 IPC A01G1/00 (2000.01) A01B79/02 (2000.01) A01G7/00 (2000.01) Preparat Simbiont-2, stimuliruyuschiy urozhaynost rasteniy.
  • 9. Glaser B., Lehmann J., Zech W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biology and fertility of soils, 35, 219–230. https://doi.org/10.1007/s00374-002-0466-4
  • 10. Grady E.N., MacDonald J., Liu L. Richman A., Yuan Ze Chun. 2016. Current knowledge and perspectives of Paenibacillus: a review. Microbial Cell Factories, 15, 203. https://doi.org/10.1186/s12934-016-0603-7
  • 11. Grossman J.M., O’neill B.E., Tsai S.M., Liang B., Neves E. Lehmann J. 2010. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microb Ecol, 60, 192–205. https://doi.org/10.1007/s00248-010-9689-3
  • 12. Hale S.E., Alling V., Martinsen V., Mulder J., Breedveld G.D. Cornelissen G. 2013. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere, 91(11), 1612–1619. https://doi.org/10.1016/j.chemosphere.2012.12.057
  • 13. Harvey O.R., Kuo L.J., Zimmerman A.R., Louchouarn P., Amonette J.E., Herbert B.E. 2012. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (Biochars), Environ. Sci. Technol., 46, 1415–1421. https://doi.org/10.1021/es2040398
  • 14. Hester R.E., Harrison R.M., Addiscott T.M. 1996. Fertilisers and nitrate leaching. Agricultural Chemicals and the Environment, The Royal Society of Chemistry, Cambridge, 1–26.
  • 15. Igaz D., Simansky V, Horak J., Kondrlova E., Domanovа J., Rodny M. Buchkina N. 2018. Can a single dose of biochar affect selected soil physical and chemical characteristics? J Hydrol Hydromech, 66(4), 421–428. https://doi.org/10.2478/ johh-2018-0034
  • 16.Jin L., Lee H.-G., Kim H.-S., Ahn C.-Y., Oh H.-M. 2013. Geodermatophilus soli sp. nov. and Geodermatophilus terrae sp. nov., two actinobacteria isolated from grass soil. International Journal of Systematic and Evolutionary Microbiology, 63(7), 2625–2629. https://doi.org/10.1099/ijs.0.048892-0
  • 17.Ju X.T., Kou C.L., Zhang F.S. Christie P. 2006. Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain. Environmental Pollution, 143(1), 117–125. https://doi.org/10.1016/j.envpol.2005.11.005
  • 18.Juria M., Simansky V. 2019. Effects of biochar and its reapplication on soil pH and sorption properties of silt loam haplic Luvisol. Acta horticulturae et regiotecturae, 22(2), 66–71. https://doi.org/10.2478/ahr-2019-0012
  • 19. Karhu K., Mattila T., Bergstrom I., Regina K. 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study. Agric. Ecosyst. Environ 140, 309–313. https://doi.org/10.1016/j.agee.2010.12.005
  • 20. Kopiy M.L., Oliferchuk V.P. 2016. Mycological structure of the soil within the limits of formed ecotypes of degraded landscapes in Yavoriv sulphuric quarry. Scientific Bulletin of UNFU, 26(1), 174–181. https://doi.org/10.15421/40260125
  • 21. Kopiy M.L., Oliferchuk V.P., Kopiy L.I. 2016. Species diversity of micromycetesin the soil of Novyj Rozdil sulfuric quarry territory. Scientific Bulletin of UNFU, 26(3), 278–287. https://doi.org/10.15421/40260346
  • 22. Kopiy M.L., Oliferchuk V.P., Kopiy L.I. 2017. The comparative characteristic of mycological structure of technogenic territories of sulfuric quarries in Lviv region. Scientific Bulletin of UNFU, 27(3), 99–104. https://doi.org/10.15421/40270322
  • 23. Liu X., Zhang A., Ji C., Joseph S., Bian R., Li L., Pan G. Paz-Ferreiro J. 2013. Biochar’s effect on crop productivity and the dependence on experimental conditions – a meta-analysis of literature data. Plant and Soil, 373, 583–594. https://doi.org/10.1007/s11104-013-1806-x
  • 24. Marfenina О.Е. 2005. Anthropogenic ecology of soil fungi. M.: Medicine for all.
  • 25. Nazarovets U., Oliferchuk V., Copiy L., Copiy M. 2017. Succession of plant communities within Podorozhnenskyi sulfur career. Agroecological journal, 27(1), 121–127.
  • 26. Nigussie A., Kissi E., Misganaw M., Ambaw G., 2012. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. American- Eurasian J. Agric. Environ. Sci. 12(3), 369–376. https://www.researchgate.net/publication/331223260_Effect_of_Biochar_Application_on_Soil_Properties_and_Nutrient_Uptake_of_Lettuces_Lactuca_sativa_Grown_in_Chromium_Polluted_Soils
  • 27. Normand P. Berry A., Benson D.R. 2015. Acidothermus. Bergey’s Manual of Systematics of Archaea and Bacteria. https://doi.org/10.1002/9781118960608
  • 28. Oliferchuk V.P., Fedorovych D.V. 2021. Influence of Tuber melanosporum mycorrhizal fungus on the biodiversity rhisosphere micromycetes and growth and productivity of hazelnut. Scientific Bulletin of UNFU, 31(2), 28–34. https://doi.org/10.36930/40310204
  • 29. Oliferchuk V., Fedorovych D. 2019. Application of mycorrhizal fungus Tuber melanosporum to stimulate the growth and development of soybean and spring barley. Factors of experimental evolution of organisms, 24, 133–138. https://doi.org/10.7124/FEEO.v24.1092
  • 30. Oliferchuk V.P., Oliferchuk S.P., Diner T.V. 2006. Patent for invention №124179 (19) UA (51) IPC A01B 79/02 (2006.01) A01N 63/30 (2020.01) C05F 11/08 (2006.01) Method for restoring and increasing soil fertility according to the principle of bioregulation in microbial and mycocenoses.
  • 31. Opota O., Ney B., Zanetti G., Jaton K., Greub G., Prod’hom G. 2014. Bacteremia caused by Comamonas kerstersii in a patient with diverticulosis. Journal of Clinical Microbiology, 52(3), 1009–1012. https://doi.org/10.1128/JCM.02942-13
  • 32. Tsavkelova E.A., Klimova S.Y., Cherdyntseva T.A., Netrusov A.I. 2006. Microbial producers of plant growth stimulators and their practical use: a review. Appl. Biochem. Microbiol., 42, 117–126. https://doi.org/10.1134/S0003683806020013. IF: 1,022; SJR: 0,28; Q3.
  • 33. Wang S., Gao B., Zimmerman A.R., Li Y., Ma L., Harris W.G., Migliaccio K.W. 2014. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour. Technol., 175, 391–395. https://doi.org/10.1016/j.biortech.2014.10.104
  • 34. Watanabe M., Miura S., Hasegawa S., Koshikawa M.K., Takamatsu T., Kohzu A., Imai A. Hayashi S. 2018. Coniferous coverage as well as catchment steepness influences local stream nitrate concentrations within a nitrogen-saturated forest in central Japan. Science of The Total Environment, 636, 539–546. https://doi.org/10.1016/j.scitotenv.2018.04.307
  • 35. Zhang H., Sekiguchi Y., Hanada S., Hugenholtz P., Kim H., Kamagata Y., Nakamura K. 2003. Gemmatimonas aurantiaca gen. nov., sp. nov., a gramnegative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. International journal of systematic and evolutionary microbiology, 53(Pt 4), 1155–1163. https://doi.org/10.1099/ijs.0.02520-0
  • 36. Zhou Y.M., Gao B., Zimmerman A.R., Fang J., Sun Y.N., Cao X.D. 2013. Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chem. Eng. J., 231, 512–518. https://doi.org/10.1016/j.cej.2013.07.036
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-dedc6e1d-3bca-4877-8252-cc5127053d6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.