Warianty tytułu
Języki publikacji
Abstrakty
The process of electrical discharge micro-drilling (micro-EDD) of micro holes is used in the aviation, automotive and biomedical industries. In this process, an important issue affecting the stability and efficiency of the process is the flow of the working fluid through the tool electrode channel and the front and side gap areas. Because tool electrodes have diameters below 1 mm. Many factors present in the EDM-drillig process occurring on a micro scale mean that a full explanation of the phenomena affecting the process is limited. The solution is to analyze the phenomena in the process based on the results of numerical simulations, which are based on real measurements. The aim of this work is to analyze the flow of de-ionized water through a brass single-channel electrode with a channel diameter of 0.11 mm and a front and side gap. The liquid flow was analyzed for various variants (with and without cavitation, with added rotation of the tool electrode, with and without surface roughnes with material particles). In simulation, it is important to gradually increase the complexity of the model, starting with the simplest model and gradually adding further phenomena. Analysis of the simulation results showed a significant impact on the liquid flow of cavitation, as well as the presence of vortex gaps in some areas, which have a significant impact on the process of drilling micro holes.
Rocznik
Tom
Strony
159--176
Opis fizyczny
Bibliogr. 41 poz., fig., tab.
Twórcy
autor
- Department of Rail Vehicles and Transport, Faculty of Mechanical Engineering, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Cracow, Poland, magdalena.machno@pk.edu.pl
autor
- General Electric Aerospace Poland, al. Krakowska 110/114, 02-256 Warsaw, Poland, marcin.trajer@ge.com
autor
- General Electric Aerospace Poland, al. Krakowska 110/114, 02-256 Warsaw, Poland, adrian.czeszkiewicz@ge.com
autor
- Łukasiewicz Research Network – Institute of Aviation, al. Krakowska 110/114, 02-256 Warsaw, Poland, paulina.zurawka@ge.com
Bibliografia
- 1. Arshad R., Mehmood S., Shah M., Imran M., Qayyum F. Effect of distilled water and kerosene as dielectrics on machining rate and surface morphology of Al-6061 during electric discharge machining. Advances in Science and Technology Research Journal. 2019; 13(3): 162–169.
- 2. Santarao K, Prasad C, Swami Naidu G. Experimental investigation to study the viscosity and dispersion of conductive and non-conductive nanopowders’ blennded dielectrics. Advances in Science and Technology Research Journal. 2017; 11(1): 154–160.
- 3. Struzikiewicz, G. Investigation of the cutting fluid incidence angle direction in turning grade 5 ELI titanium alloy under high-pressure cooling conditions. Materials. 2023; 16(15): 5371.
- 4. Trajer M., Czeszkiewicz A., Machno M. Analysis of the relationship between the properties of selected materials and the parameters of the EDD process. In: Material Forming: The 26th International ES-AFORM Conference on Material Forming held in Kraków, Poland 2023 April 19–21, 1747–1758.
- 5. Lipiec P., Machno M., Skoczypiec S. The experimental research on electrodischarge drilling of high aspect ratio holes in Inconel 718. In: AIP Conference Proceedings, Palermo, Italy 2018 April 23–25, 1960(1).
- 6. Yuri M.T., Masada J., Tsukagoshi K., Ito E., Hada S. Development of 1600 °C-class high-efficiency gas turbine for power generation applying J-type technology. Mitsubishi Heavy Industries Technical Review. 2013; 50(3): 1–10.
- 7. Klocke F., Klink A., Veselovac D., Aspinwall D.K., Leung Soo S., Schmidt M., Schilp J., Levy G., Kruth J.-P. Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes. CIRP Annals. 2014; 63(2): 703–726.
- 8. Li G., Natsu W., Yu Z. Study on quantitative estimation of bubble behavior in micro hole drilling with EDM. International Journal of Machine Tools and Manufacture. 2019; 146(103437).
- 9. Kliuev M., Boccadoro M., Perez R., Dal Bó W., Stirnimann J., Kuster F., Wegener K. EDM drilling and shaping of cooling holes in Inconel 718 turbine blades. Procedia CIRP. 2016; 42: 322–327.
- 10. Machno M., Trajer M., Bizoń W., Czeszkiewicz A. A Study on accuracy of micro-holes drilled in Ti6Al-4V alloy by using electrical discharge machining Process. Advances in Science and Technology Research Journal. 2022; 16(6): 55–72.
- 11. Arshad R., Mehmood S., Shah M., Imran M., Qayyum F. Effect of distilled water and kerosene as dielectrics on machining rate and surface morphology of Al-6061 during electric discharge machining. Advances in Science and Technology Research Journal. 2019; 13(3): 162–169.
- 12. Maccarini G., Pellegrini G., Ravasio Ch. Effects of the properties of workpiece, electrode and dielectric fluid in micro-EDM drilling process. Procedia Manufacturing. 2020; 51: 834–841.
- 13. Ekmekci B., Sayar A. Debris and consequences in micro electric discharge machining of micro-holes. International Journal of Machine Tools and Manufacture. 2013; 65: 58–67.
- 14. Kliuev M., Baumgart C., Wegener K. Fluid dynamics in electrode flushing channel and electrodeworkpiece gap during EDM drilling. Procedia CIRP. 2018; 68: 254–259.
- 15. Machno M., Matras A., Szkoda M. Modelling and analysis of the effect of EDM-drilling parameters on the machining performance of Inconel 718 using the RSM and ANNs methods Materials. 2022; 15(3): 1152.
- 16. Tanjilul M., Ahmed A., Senthil Kumar A., Rahman M. A study on EDM debris particle size and flushing mechanism for efficient debris removal in EDM-drilling of Inconel 718. Journal of Materials Processing Technology. 2018; 255: 263–274.
- 17. Brito Gadeschi G., Schneider S., Mohammadnejad M., Meinke M. , Klink, W. Schröder A., Klocke F. Numerical analysis of flushing-induced thermal cooling including debris transport in electrical discharge machining (EDM). Procedia CIRP. 2017; 58: 116–121.
- 18. Kliuev M., Baumgart C., Büttner H., Wegener K. Flushing velocity observations and analysis during EDM drilling. Procedia CIRP. 2018; 77: 590–593.
- 19. Liang W., Tong H., Li B., Li Y. Feasibility research on break-out detection using audio signal in drilling film cooling holes by EDM. Procedia CIRP. 2020; 95: 566–571.
- 20. Munz M., Risto M., Haas R. Specifics of flushing in electrical discharge drilling. Procedia CIRP. 2013; 6: 83–88.
- 21. Zhang Z., Zhang W., Liu Y., Ma F., Su Ch., Sha Z. Study on the gap flow simulation in EDM small hole machining with Ti alloy. Advances in Materials Science and Engineering. 2017; 2017: 1–23.
- 22. Brito Gadeschi G., Schilden T., Albers M., Vorspohl J., Meinke M., Schröder W. Direct particle–fluid simulation of flushing flow in electrical discharge machining. Engineering Applications of Computational Fluid Mechanics. 2021; 15(1): 328–343.
- 23. Liu H., Bai J. The tool electrode wear and gap fluid field simulation analysis in micro-EDM drilling of micro-hole array. Procedia CIRP. 2020; 95: 220–225.
- 24. Kuppan, P., Narayanan, S., Oyyaravelu, R., Balan, A.S.S. Performance evaluation of electrode materials in electric discharge deep hole drilling of Inconel 718 superalloy. Procedia Engineering. 2017; 174: 53–59.
- 25. Pan Z., Feng Y., Hung T.P., Jiang Y.C., Hsu F.C., Wu L.T., Lin C.F., Lu Y.C., Liang S.Y.. Heat affected zone in the laser-assisted milling of Inconel 718. Journal of Manufacturing Processes. 2017; 30: 141–147.
- 26. Hernándes M., Amriz R.R., Cortès R., Gómora C.M., Plascencia G., Jaramillo D. Assessment of gas tungsten arc welding thermal cycles on Inconel 718 alloy. Transactions of Nonferrous Metals Society of China. 2019; 29: 579–587.
- 27. Khan A.A. Electrode wear and material removal rate during EDM of aluminum and mild steel using copper and brass electrodes. The International Journal of Advanced Manufacturing Technology. 2008; 39: 482–487.
- 28. Suhardjono. Characteristics of electrode materials on machining performance of tool steel SKD11 with EDM shinking. ARPN: Journal of Engineering and Applied Sciences. 2016; 11: 986–991.
- 29. Reynaerts D., Heeren P.-H.’s, van Brussel H. Microstructuring of silicon by electro-discharge machining (EDM)-part I: theory. Sensors and Actuators A: Physical. 1997; 60(1–3): 212–218.
- 30. Mohiuddin Mala Gh., Li D. Flow characteristics of water in microtubes. International Journal of Heat and Fluid Flow. 1999; 20(2): 142–148.
- 31. Wang B.W., Peng X.F. Experimental investigation on forced flow convection of liquid flow through microchannels. International Journal of Heat and Mass Transfer. 1994; 37(1): 73–82.
- 32. Mullya S.A., Karthikeyan G. CFD simulation of dielectric fluid flow in micro electro discharge milling process. Materials Today: Proceedings. 2018; 5(11): 24792–24798.
- 33. Adams T., Grant Ch. A simple algorithm to relate measured surface roughness to equivalent sand-grain roughness. International Journal of Mechanical Engineering and Mechatronics. 2012; 1(1): 66–71.
- 34. Murray J.W., Sun J., Patil D.V., Wood T.A., Clare A.T. Physical and electrical characteristics of EDM debris. Journal of Materials Processing Technology. 2016; 229: 54–60.
- 35. Ferraris E., Castiglioni V., Ceyssens F., Annoni M., Lauwers B., Reynaerts D. EDM drilling of ultrahigh aspect ratio micro holes with insulated tools. CIRP Annals. 2013; 62(1): 191–194.
- 36. Ahmed A., Boban J., Rahman M. Novel EDM deep hole drilling strategy using tubular electrode with orifice. CIRP Annals. 2021; 70(1): 151–154.
- 37. Murray J., Zdebski D., Clare A.T. Workpiece debris deposition on tool electrodes and secondary discharge phenomena in micro-EDM. Journal of Materials Processing Technology. 2012; 212(7): 1537–1547.
- 38. Thirumalai Kumaran S., Ko T.J., Uthayakumar M. et al. Surface texturing by dimple formation in TiAlSiZr alloy using μ-EDM. Journal of the Australian Ceramic Society, 2017; 53: 821–828.
- 39. Machno M., Bogucki R., Szkoda M., Bizoń W. Impact of the deionized water on making high aspect ratio holes in the Inconel 718 alloy with the use of electrical discharge drilling. Materials. 2020; 13(6): 1476.
- 40. Zhang W., Liu Y., Zhang S., Ma F., Wang P., Yan Ch. Research on the Gap Flow Simulation of Debris Removal Process for Small Hole EDM Machining with Ti Alloy. Proc. of the 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering, Held, China 2015, 2121–2126.
- 41. Wang Y.Q., Cao M.R., Yang S.Q, Li W.H. Numerical simulation of liquid-solid two-phase flow field in discharge gap of high-speed small hole EDM drilling. Advanced Materials Research 2008; 53–54: 409–414.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-de9ab95a-f9b3-49db-a08c-492eb1f1e596