Czasopismo
2013
|
Vol. 41, No. 2
|
145--169
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Analiza systemu kolejkowego z wieloma stanowiskami obsługi dostępnymi na żądanie i fakultatywnym spektrum czynności
Języki publikacji
Abstrakty
In this paper we study a multi-server queueing model in which the customer arrive according to a Markovian arrival process. The customers may require, with a certain probability, an optional secondary service upon completion of a primary service. The secondary services are offered (in batches of varying size) when any of the following conditions holds good: (a) upon completion of a service a free server finds no primary customer waiting in the queue and there is at least one secondary customer (including possibly the primary customer becoming a secondary customer) waiting for service; (b) upon completion of a primary service, the customer requires a secondary service and at that time the number of customers needing a secondary service hits a pre-determined threshold value; (c) a server returning from a vacation finds no primary customer but at least one secondary customer waiting. The servers take vacation when there are no customers (either primary or secondary) waiting to receive service. The model is studied as a QBD-process using matrix-analytic methods and some illustrative examples arediscussed.
Ten artykuł poświęcony jest modelom kolejkowym dla systemów z wieloma serwerami z Markowskim strumieniem zgłoszeń. Klienci żądają, aby obsługa świadczyła również pewne opcjonalne usługi po zakończeniu podstawowego procesu. Te usługi dodatkowe (o różnym zakresie) mają być dostępne i oferowane z pewnym prawdopodobieństwem, gdy którykolwiek z następujących warunków jest spełniony: (a) po zakończeniu obsługi na darmowy, podstawowy, serwis nie czeka klient w kolejce i jest co najmniej jeden chętny klient na serwis wtórny (tym chętnym prawdopodobnie jest klientem, który właśnie otrzymał podstawową usługę), (b) po zakończeniu podstawowego serwisu, klient wymaga dodatkowego serwisu i w tym czasie liczba klientów, którzy reflektują na tę dodatkową usługę przekroczy wcześniej ustaloną wartość progową; (c) serwer który wznawia obsługę po przerwie nie ma klientów na podstawową usługę, ale przynajmniej jeden klient czeka na dodatkowy serwis. Serwery mogą zostać wyłączone na pewien czas, gdy nie ma klientów (podstawowych lub chętnych na serwis dodatkowy) czekających na obsługę. Model jest badane jako uogólniony proces urodzin i śmierci (quasi-birth-death-matrix-process) analizowany analitycznie. Podane są przykłady ilustrujące zastosowane podejście.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
145--169
Opis fizyczny
Bibliogr. 60 poz., rys.
Twórcy
autor
- Kettering University Department of Industrial and Manufacturing Engineering Flint, MI-48504, USA, schakrav@kettering.edu
Bibliografia
- [1] Alfa, A.S. Vacation models in discrete time. Queueing Systems, 44, 5-30, 2003.
- [2] Artalejo, J.R., Gomez-Correl, A., and He, Q.M. Markovian arrivals in stochastic modelling: a survey and some new results. SORT, 34 (2), 101-144, 2010.
- [3] Banik, A.D., Gupta, U.C., and Pathak, S.S. BM AP/G/1/N queue with vacations and limited service discipline. Applied Mathematics and Computation, 180, 707-721, 2006.
- [4] Blondia, C. Finite capacity vacation models with non-renewal input. Journal of Applied Probability, 28, 174-197, 1991.
- [5] Chae, K.C., Lee, H.W., and Ahn, C.W. An arrival time approach to M/G/1−type queues with generalized vacations. Queueing Systems, 38, 91-100, 2001.
- [6] Chakravarthy, S., and Parthasarathy, R. A finite capacity queueing model with primary and secondary services. Computers and Industrial Engineering, 16, 97-108, 1989.
- [7] Chakravarthy, S.R. The batch Markovian arrival process: A review and future work. Advances in Probability Theory and Stochastic Processes. Eds., A. Krishnamoorthy et al. Notable Publications Inc., NJ, 21-39, 2001.
- [8] Chakravarthy, S.R. Markovian arrival processes. Wiley Encyclopedia of Operations Research and Management Science. Published Online: 15 JUN 2010.
- [9] Chakravarthy, S.R. Analysis of M AP/P H1 /P H2 /1 queue with vacations and optional secondary services. Submitted for Publication.
- [10] Chang, S.H., Takine, T., Chae, K.C., and Lee, H.W. A unified queue length formula for BM AP/G/1 queue with generalized vacations. Stochastic Models, 18, 369-386, 2002.
- [11] Chang, S.H., and Takine, T. Factorization and stochastic decomposition properties in bulk queues with generalized vacations. Queueing Systems, 50, 165-183, 2005.
- [12] Choi, D.I., and Kim, T. Analysis of a two-phase queueing system with vacations and Bernoulli feedback. Stochastic Analysis and Applications, 21, 1009-1019, 2003.
- [13] Choudhury, G. Some aspects of an M/G/1 queueing system with optional second service. TOP, 11, 141-150, 2003.
- [14] Choudhury, G., and Paul, M. A batch arrival queue with an additional service channe under N- policy. Applied Mathematics and Computation, 156, 115-130, 2004.
- [15] Choudhury, G., and Madan, K. C. (2004). A two-phase batch arrival queueing system with a vacation time under Bernoulli schedule. Applied Mathematics and Computation, 149, 337-349, 2004.
- [16] Choudhury, G., and Paul, M. Analysis of a two phase batch arrival queueing model with Bernoulli vacation schedule. Revista Investigation Operacional, 25, 3, 217-228, 2004.
- [17] Choudhury, G., and Madan, K.C. A two-stage batch arrival queueing system with a modified Bernoulli schedule vacation under N-policy. Mathematical and Computer Modelling, 42, 71-85, 2005.
- [18] Choudhury, G. Steady state analysis of a M/G/1 queue with linear retrial policy and two-phase service under Bernoulli vacation schedule. Applied Mathematical Modelling, 32, 2480-2489, 2008.
- [19] Dimitriou, I., and Langaris, C. Analysis of a retrial queue with two-phase service and server vacations. Queueing Systems, 60, 111-129, 2008.
- [20] Dimitriou, I., and Langaris, C. A repairable queueing model with two-phase service, start-up times and retrial customers. Computers and Operations Research, 37, 1181- 1190, 2010.
- [21] Doshi, B.T. A note on stochastic decomposition in a GI/G/1 queue with vacations or set-up times. Journal of Applied Probability, 22, 419-428, 1985.
- [22] Doshi, B.T. Queueing systems with vacations - a survey. Queueing Systems, 1, 29-66, 1986.
- [23] Doshi, B.T. Generalization of the stochastic decopmosition results for the single-server queues with vacations, Stochastic Models, 6, 307-333, 1990.
- [24] Doshi, B.T. Single server queues with vacations, in: Stochastic Analysis of Computer and Communications Systems, ed. H. Takagi, 217-265, 1990.
- [25] Doshi, B.T. Analysis of a two-phase queueing system with general service times. Operations Research Letters, 10, 265-272, 1991.
- [26] Ferrandiz, J.M. The BM AP/GI/1 queue with server set-up times and server vacations. Advances in Applied Probability, 25, 235-254, 1993.
- [27] Graham, A. Kronecker Products and Matrix Calculus with Applications. Ellis Horwood, Chichester, UK, 1981.
- [28] Jeyakumar, S., and Arumuganathan. A non-Markovian bulk queue with multiple vacations and control policy on request for re-service. Quality Technology and Quantitative Management, 8, 253-269, 2011.
- [29] Kalyanaraman, R., and Bala Murugan, S.P. A single server queue with additional optional service in batches and server vacation. Applied Mathematical Sciences, 2, 2765-2776, 2008.
- [30] Kasahara, S., Takine, T., Takahashi, Y., and Hasegawa, T. M AP/G/1 queues under N-policy with and without vacations. Journal of Operations Research Society of Japan, 39, 188-212, 1996.
- [31] Katayama, T., and Kobayashi, K. Sojourn time analysis of a queueing system with two-phase service and server vacations. Naval Research Logistics, 54, 59-65, 2007.
- [32] Ke, J-C., C-H. Wu., and Zhang, Z.G. Recent developments in vacation queueing models: A short survey. International Journal of Operations Research, 7, 3-8, 2010.
- [33] Kim, T.S., and Park, A.Q. Cycle analysis of a two-phase queueing model with threshold. European Journal of Operational Research, 144, 157-165, 2003.
- [34] Krishna, C.M., and Lee, Y.H. A study of a two-phase service. Operations Research Letters, 9, 91-97, 1990.
- [35] Krishna Kumar, B., Vijayakumar, A., and Arivudainambi, D. An M/G/1 retrial queueing system with two-phase service and preemptive resume. Annals of Operations Research, 113, 61-79, 2002.
- [36] Krishnamoorthy, A., Pramod, P., and Chakravarthy, S.R. Queues with interruptions: A survey. TOP, DOI 10.1007/s11750-012-0256-6. Published online: 16 March 2012.
- [37] Latouche G. and Ramaswami V. Introduction to matrix analytic methods in stochastic modeling. SIAM, 1999.
- [38] Lee, H.W., Ahn, B.Y., and Park, N.I. Decompositions of the queue length distributions in the M AP/G/1 queue under multiple and single vacations with N-policy. Stochastic Models, 17, 157-190, 2001.
- [39] Lucantoni, D.M. New results on the single server queue with a batch Markovian arrival process. Stochastic Models, 7, 1-46, 1991.
- [40] Lucantoni, D., Meier-Hellstern, K.S., and Neuts, M.F. A single-server queue with server vacations and a class of nonrenewal arrival processes. Advances in Applied Probability, 22, 676-705, 1990.
- [41] Madan, K.C. An M/G/1 queue with second optional service. Queueing Systems, 34, 36-46, 2000.
- [42] Madan, K.C. On a single server queue with two-stage heterogeneous service and deterministic server vacations. International Journal of System Science, 32, 837-844, 2001.
- [43] Madan, K. C., Al-Nasser, A. D., and Al-Masri, A. Q. On M X /G(G1 , G2 )/1 queue with optional re-service. Applied Mathematics and Computation, 152, 71-88, 2004.
- [44] Marcus, M., and Minc, H. A survey of matrix yheory and matrix inequalities. Allyn and Bacon, Boston, MA, 1964.
- [45] Matendo, S.K. A single-server queue with server vacations and a batch Markovian arrival process. Cahiers C.E.R.O. 35, 87-114, 1993.
- [46] Medhi, J. A single server Poisson input queue with a second optional channel. Queueing Systems, 42, 239-242, 2002.
- [47] Neuts, M.F. A versatile Markovian point process. Journal of Applied Probability, 16, 764-779, 1979.
- [48] Neuts, M.F. Matrix-geometric solutions in stochastic models: An algorithmic approach. The Johns Hopkins University Press, Baltimore, MD, 1981. [1994 version is Dover Edition].
- [49] Neuts, M.F. Structured stochastic matrices of M/G/1 type and their applications. Marcel Dekker, NY, 1989.
- [50] Neuts, M.F. Models based on the Markovian arrival process. IEICE Transactions on Communications, E75B, 1255-1265, 1992.
- [51] Neuts, M.F. Algorithmic Probability: A collection of problems. Chapman and Hall, NY, 1995.
- [52] Nishimura, S. A spectral method for a nonpreemptive priority BMAP/G/1/N queue. Stochastic Models, 21, 579-597, 2005.
- [53] Saffer, Z., and Telek, M. Unified analysis of BM AP/G/1 cyclic polling models. Queueing Systems, 64, 69-102, 2010.
- [54] Schellhaas, H. Single server queues with a batch Markovian arrival process and server vacations. OR Spektrum, 15, 189-196, 1994.
- [55] Stewart, W.J. Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton, NJ, 1994.
- [56] Takine, T., and Takahashi, Y. On the relationship between queue lengths at a random instant and at a departure in the stationary queue with BMAP arrivals. Stochastic Models, 14, 601-610, 1998.
- [57] Takine, T. The nonpreemptive priority M AP/G/1 queue. Operations Research, 47, 917-927, 1999.
- [58] Tian, N.S., and Zhang, Z.G. Vacation queueing models: Theory and applications. Springer Publishers, New York. 2006.
- [59] Wang, J. An M/G/1 queue optional second service and server breakdowns. Computers and Mathematics with Applications, 47, 1713-1723, 2004.
- [60] Wu, J., Z. Liu., and Peng. Y. On the BM AP/G/1 G−queues with second optional service and multiple vacations. Applied Mathematical Modelling, 33, 4314-4325, 2009.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-de90d7a3-01e8-4a04-8875-a3ee929cfc35