Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | no. 51 | 152--162
Tytuł artykułu

Forest cover change detection in relation to climate variability and LULC changes using GIS and RS techniques. A case of the Kafa zone, southwest Ethiopia

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ethiopia has lost sizable forest resources due to rapid population growth and subsequent increase in the demand for agricultural land and fuel woods. In this study, GIS and remote sensing techniques were used to detect forest cover changes in relation to climate variability in the Kafa zone, southwest Ethiopia. Landsat Thematic Mapper (TM) images of 1986 and 1990, Enhanced Thematic Mapper plus (ETM+) image of 2010 and Landsat-8 Operational Land Imager (OLI-8) image of 2018 were acquired at a resolution of 30 m to investigate spatial-temporal forest cover and land use changes. A supervised image classification was made using a maximum likelihood method in ERDAS imagine V9.2 to identify the various land use and land cover classes. Both spectral (normalised difference vegetation index – NDVI) and post classification change detection methods were used to determine the forest cover changes. To examine the extent and rate of forest cover changes, post classification comparisons were made using ArcGIS V 10.4.1. A net forest cover change of 1168.65 ha (12%) was detected during the study period from 1986 to 2018. The drop in the NDVI from 0.06–0.64 in 1986 to (–0.08)–0.12 in 2018 indicated a marked forest cover change in the study area. The correlation of NDVI values with climate data indicated the forest was not in a stable condition. The declining of the forest cover was most likely caused by climate variability in the study area.
Wydawca

Rocznik
Tom
Strony
152--162
Opis fizyczny
Bibliogr. 41 poz., mapy, rys., tab., wykr.
Twórcy
  • Jimma Institute of Technology, Faculty of Civil and Environmental Engineering, Jimma University, Jimma, P.O.Box: 378, Ethiopia, dejenebeyeneaau@gmail.com
  • Jimma Institute of Technology, Faculty of Civil and Environmental Engineering, Jimma University, Jimma, P.O.Box: 378, Ethiopia
  • Jimma Institute of Technology, Faculty of Civil and Environmental Engineering, Jimma University, Jimma, P.O.Box: 378, Ethiopia
Bibliografia
  • AL-DOSKI J., MANSOR S., SHAFRI H. 2013. Change detection process and techniques. Civil and Environmental Research. Vol. 3(10) p. 37–46.
  • ALAWAMY J.S., BALASUNDRAM S.K., HANIF A.H.M., SUNG C.T.B. 2020. Detecting and analyzing land use and land cover changes in the Region of Al-Jabal Al-Akhdar, Libya using time-series landsat data from 1985 to 2017. Sustainability (Switzerland). Vol. 12(11). DOI 10.3390/su12114490.
  • ALQURASHI A.F., KUMAR L. 2014. Land use and land cover change detection in the Saudi Arabian desert cities of Makkah and Al-Taif using satellite data. Advances in Remote Sensing. Vol. 3(3) p. 106–119. DOI 10.4236/ars.2014.33009.
  • APPIAH D.O., SCHRÖDER D., FORKUO E.K., BUGRI J.T. 2015. Application of geo-information techniques in land use and land cover change analysis in a peri-urban district of Ghana. ISPRS International Journal of Geo-Information. Vol. 4(3) p. 1265–1289. DOI 10.3390/ijgi4031265
  • ATTRI P., CHAUDHRY S., SHARMA S. 2015. Remote sensing & GIS based approaches for LULC change detection – A review. International Journal of Current Engineering and Technology. Vol. 5(5) p. 3126–3137.
  • Austrian MAB Committee 2011. Biosphere reserves in the mountains of the world. Excellence in the clouds? Vienna. Austrian Academy of Sciences Press pp. 120.
  • AYELE G., HAYICHO H., ALEMU M. 2019. Land use land cover change detection and deforestation modeling: In Delomena District of Bale Zone, Ethiopia. Journal of Environmental Protection. Vol. 10(04) p. 532–561. DOI 10.4236/jep.2019.104031.
  • BENDER S., TEKLE M. undated. Community action for biodiversity and forest conservation and adaptation to climate change in the wild coffee forests (CAFA). Springer International Publishing.
  • CHENG S., HIWATASHI Y., IMAI H., NAITO M., NUMATA T. 1998. Deforestation and degradation of natural resources in Ethiopia: Forest management implications from a case study in the Belete-Gera Forest. Journal of Forest Research. Vol. 3(4) p. 199–204. DOI 10.1007/bf02762193.
  • COPPIN P., JONCKHEERE I., NACKAERTS K., MUYS B., LAMBIN E. 2004. Digital change detection methods in ecosystem monitoring: A review. International Journal of Remote Sensing. Vol. 25(9) p. 1565–1596. DOI 10.1080/0143116031000101675.
  • COPPIN P.R., BAUER M.E. 1996. Digital change detection in forest ecosystems with remote sensing imagery. Remote Sensing Reviews. Vol. 13(3–4) p. 207–234. DOI 10.1080/02757259609532305.
  • DANANO K.A., LEGESSE A., LIKISA D. 2018. Monitoring deforestation in South Western Ethiopia using geospatial technologies. Journal of Remote Sensing & GIS. Vol. 07(01) p. 1–5. DOI 10.4172/2469-4134.1000229.
  • DONG Y., FORSTER B., TICEHURST C. 1997. Radar backscatter analysis for urban environments. International Journal of Remote Sensing. Vol. 18(6) p. 1351–1364. DOI 10.1080/014311697218467.
  • ENGDAWORK A., BORK H. 2014. Long-term indigenous soil conservation technology in the Chencha Area, Southern Ethiopia: Origin, Characteristics, and Sustainability. AMBIO. Vol. 43 p. 932–942. DOI 10.1007/s13280-014-0527-6.
  • FERREIRA A.F., ZIMMERMANN H., SANTOS R., VON WEHRDEN H. 2020. Biosphere reserves’ management effectiveness – A systematic literature review and a research agenda. Sustainability (Switzerland). Vol. 12(12) p. 1–31. DOI 10.3390/SU12145497.
  • FICHERA C.R., MODICA G., POLLINO M. 2012. Land cover classification and change-detection analysis using multi-temporal remote sensed imagery and landscape metrics. European Journal of Remote Sensing. Vol. 45(1) p. 1–18. DOI 10.5721/EuJRS20124501.
  • GANDHI G.M., PARTHIBAN S., THUMMALU N., CHRISTY A. 2015. NDVI: Vegetation change detection using remote sensing and Gis – A case study of Vellore District. Procedia Computer Science. Vol. 57 p. 1199–1210. DOI 10.1016/j.procs.2015.07.415.
  • GEBRU T.D. 2016. Deforestation in Ethiopia: causes, impacts and remedy. International Journal of Engineering Development and Research. Vol. 4(2) p. 2321–9939.
  • HASSAN Z., SHABBIR R., AHMAD S.S., MALIK A.H., AZIZ N., BUTT A., ERUM S. 2016. Dynamics of land use and land cover change (LULCC) using geospatial techniques: a case study of Islamabad Pakistan. Springer Plus. Vol. 5(1). DOI 10.1186/s40064-016-2414-z.
  • HUETE A., DIDAN K., MIURA T., RODRIGUEZ E.P., GAO X., FERREIRA L.G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment. Vol. 83(1–2) p. 195–213. DOI 10.1016/S0034-4257(02)00096-2.
  • MAINA J., WANDIGA S., GYAMPOH B., CHARLES K.K.G. 2020. Assessment of land use and land cover change using GIS and remote sensing: A case study of Kieni, Central Kenya. Journal of Remote Sensing & GIS. Vol. 09(01) p. 1–5. DOI 10.35248/2469-4134.20.9.270.
  • KENNEDY R.E., TOWNSEND P.A., GROSS J.E., COHEN W.B., BOLSTAD P., WANG Y.Q., ADAMS P. 2009. Remote sensing change detection tools for natural resource managers: Understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote Sensing of Environment. Vol. 113(7) p. 1382–1396. DOI 10.1016/j.rse.2008.07.018.
  • KOGO B.K., KUMAR L., KOECH R. 2019. Forest cover dynamics and underlying driving forces affecting ecosystem services in western Kenya. Remote Sensing Applications: Society and Environment. Vol. 14 p. 75–83. DOI 10.1016/j.rsase.2019.02.007.
  • LUD., MAUSEL P., BRONDÍZIO E., MORAN E. 2016. Change detection techniques. International Journal of Remote Sensing. Vol. 25 p. 2365–2401. DOI 10.1080/0143116031000139863.
  • MANCINO G., NOLÈ A., RIPULLONE F., FERRARA A. 2014. Landsat TM imagery and NDVI differencing to detect vegetation change: Assessing natural forest expansion in Basilicata, southern Italy. iForest – Biogeosciences and Forestry. Vol. 7(2) p. 75–84. DOI 10.3832/ifor0909-007.
  • NABU 2017. NABU’s biodiversity assessment at the Kafa Biosphere Reserve [online]. Berlin, Addis Ababa. The Nature and Biodiversity Conservation Union. ISBN 978-3-925815-30-0 pp. 355. [Access 20.07.2020]. Available at: http://imperia.verbandsnetz.nabu.de/imperia/md/content/nabude/international/nabu_biodiversity_assessment_15.pdf
  • NEGASSA M.D., MALLIE D.T., GEMEDA D.O. 2020. Forest cover change detection using Geographic Information Systems and remote sensing techniques: a spatio-temporal study on Komto protected forest priority area, East Wollega Zone, Ethiopia. Environmental Systems Research. Vol. 9(1) p. 1–14. DOI 10.1186/s40068-020-0163-z.
  • OLJIRRA A. 2019. The causes, consequences and remedies of deforestation in Ethiopia. Journal of Degraded and Mining Lands Management. Vol. 6(3) p. 1747–1754. DOI 10.15243/jdmlm.2019.063.1747.
  • OTHOW O.O., LEGESSE GEBRE S., OBSI GEMEDA D. 2017. Analyzing the rate of land use and land cover change and determining the causes of forest cover change in Gog District, Gambella Regional State, Ethiopia. Journal of Remote Sensing & GIS. Vol. 06(04). DOI 10.4172/2469-4134.1000219.
  • PONGRATZ J., CALDEIRA K. 2012. Attribution of atmospheric CO2 and temperature increases to regions: Importance of preindustrial land use change. Environmental Research Letters. Vol. 7(3). DOI 10.1088/1748-9326/7/3/034001.
  • SINGH A. 1989. Review article digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing. Vol. 10(6) p. 989–1003. DOI 10.1080/01431168908903939.
  • STOW D., PETERSEN A., HOPE A., ENGSTROM R., COULTER L. 2007. Greenness trends of Arctic tundra vegetation in the 1990s: Comparison of two NDVI data sets from NOAA AVHRR systems. International Journal of Remote Sensing. Vol. 28(21) p. 4807–4822. DOI 10.1080/01431160701264284.
  • TADESSE G., ZAVALETA E., SHENNAN C., FITZ SIMMONS M. 2014. Policy and demographic factors shape deforestation patterns and socio-ecological processes in southwest Ethiopian coffee agroecosystems. Applied Geography. Vol. 54 p. 149–159. DOI 10.1016/j.apgeog.2014.08.001.
  • VERBESSELT J., ZEILEIS A., HEROLD M. 2012. Near real-time disturbance detection using satellite image time series. Remote Sensing of Environment. Vol. 123 p. 98–108. DOI 10.1016/j.rse.2012.02.022.
  • WANG S.W., GEBRU B.M., LAMCHIN M., KAYASTHA R.B., LEE W.K. 2020. Land use and land cover change detection and prediction in the Kathmandu district of Nepal using remote sensing and GIS. Sustainability (Switzerland). Vol. 12(9). DOI 10.3390/su12093925.
  • WENG Q. 2001. A remote sensing? GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. International Journal of Remote Sensing. Vol. 22(10) p. 1999–2014. DOI 10.1080/713860788.
  • XIUWAN C. 2002. Using remote sensing and GIS to analyse land cover change and its impacts on regional sustainable development. International Journal of Remote Sensing. Vol. 23(1) p. 107–124. DOI 10.1080/01431160010007051.
  • YISMAW A. 2014. Forest cover change detection using remote sensing and GIS in Banja District, Amhara Region, Ethiopia. International Journal of Environmental Monitoring and Analysis. Vol. 2 (6) p. 354. DOI 10.11648/j.ijema.20140206.19.
  • ZAWADZKI J., CIESZEWSKI C.J., ZASADA M., LOWE R.C. 2005. Applying geostatistics for investigations of forest ecosystems using remote sensing imagery. Silva Fennica Monographs. Vol. 39(4) p. 599–617. DOI 10.14214/sf.369.
  • ZHU Z., WOODCOCK C.E. 2014. Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment. Vol. 144 p. 152–171. DOI 10.1016/j.rse.2014.01.011.
  • ZIBOON A.R., IMZAHIM I., KHALAF A.G. 2013. Utilization of remote sensing data and GIS applications for determination of the land cover change in Karbala Governorate. Vol. 31(15) p. 2773–2787.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-de638de8-5461-4ab0-a03c-9b7f33a5de4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.