Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2016 | No. 58 (1) | 13--24
Tytuł artykułu

Impact of wild forest fires in Eastern Europe on aerosol composition and particle optical properties

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the authors discuss the changes of aerosol optical depth (AOD) in the region of eastern Europe and the Baltic Sea due to wild fire episodes which occurred in the area of Belarus and Ukraine in 2002. The authors discuss how the biomass burning aerosols were advected over the Baltic area and changed the composition of aerosol ensemble for a period of several summer weeks. The air pressure situation and slow wind speeds also facilitated the development of such conditions. As a consequence very high AOD levels were recorded, by an order of 3–4 higher versus normal conditions and they significantly increased the annual averages. On particular days of August 2002 the AOD values reached a level of over 0.7. On these days fine particles fully dominated the entire ensemble of aerosol particles. They were either sulfates or smoke particles. Such situation was unique over a period of many years and it had its serious consequences for the region and especially for the Baltic Sea.
Wydawca

Czasopismo
Rocznik
Strony
13--24
Opis fizyczny
Bibliogr. 32 poz., tab., wykr., mapy
Twórcy
autor
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • 1.Beringer, J., Hutley, L.B., Tapper, N.J., Coutts, A., Kerley, A., O'Grady, A.P., 2003. Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia. Int. J. Wildland Fire 12, 333—340.
  • 2.Bokoye, A.I., de la Cosiniere, A., Cabot, T., 1997. Angstrom turbidity parameters and aerosol optical thickness: a study over 500 solar beam spectra. J. Geophys. Res. 102 (D18), 21905—21914, http:// dx.doi.org/10.1029/97JD01393.
  • 3.Bond, T.C., Doherty, S., Fahey, D., Forster, P.M., Berntsen, T., DeAngelo, B.J., Flanner, M.G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.K., Sarofim, M.C., Schultz, M.G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S.K., Hopke, P.K., Jacobson, M.Z., Kaiser, J.W., Klimont, Z., Lohmann, U., Schwarz, J.P., Shindell, D., Storelvmo, T., Warren, S.G., Zender, C.S., 2013. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 118, 5380—5552, http://dx.doi.org/10.1002/ jgrd.50171.
  • 4.Byčenkiene, S., Ulevicius, V., Prokopčiuk, N., Jasinevičiene, D., 2013. Observations of the aerosol particle number concentration in the marine boundary layer over the south-eastern Baltic Sea. Oceanologia 55 (3), 573—598, http://dx.doi.org/10.5697/oc.55- 3.573.
  • 5.Carlund, T., Hakansson, B., Land, P., 2005. Aerosol optical depth over the Baltic Sea derived from AERONETand SeaWiFS measurement. Int. J. Remote Sens. 26 (2), 233—245.
  • 6.Christensen, J.H., 1997. The Danish Eulerian hemispheric model — a three-dimensional air pollution model used for the Arctic. Atmos. Environ. 31 (24), 4169—4191, http://dx.doi.org/10.1016/S1352- 2310(97)00264-1.
  • 7.Chubarova, N., Nezval, Ye., Sviridenkov, I., Smirnov, A., Slutsker, I., 2012. Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010. Atmos. Meas. Tech. 5, 557—568, http://dx.doi.org/10.5194/amt-5-557-2012.
  • 8.Cooke, W.F., Wilson, J.J.N., 1996. A global black carbon aerosol model. J. Geophys. Res. 101, http://dx.doi.org/10.1029/ 96JD00671.
  • 9.Draxler, R.R., Rolph, G.D., 2010. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory). NOAA Air Resources Laboratory, Silver Spring, MD, USA Model access via NOAA ARL READY Web-site (http://ready.arl.noaa.gov/HYSPLIT.php).
  • 10.Eck, T.F., Holben, B.N., Reid, J.S., Dubovik, O., Smirnov, A., O'Neill, N. T., Slutsker, I., Kinne, S., 1999. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. 104, http://dx.doi.org/10.1029/1999JD900923.
  • 11.Evangeliou, N., Balkanski, Y., Cozic, A., Hao, W.M., Mouillot, F., Thonicke, K., Paugam, R., Zibtsev, S., Mousseau, T.A., Wang, R., Poulter, B., Petkov, A., Yue, C., Cadule, P., Koffi, B., Kaiser, J.W., Møller, A.P., 2015. Fire evolution in the radioactive forests of Ukraine and Belarus: future risks for the population and the environment. Ecol. Monogr. 85 (1), 49—72.
  • 12.Graber, E., Rudich, Y., 2006. Atmospheric HULIS: how humic-like are they? A comprehensive and critical review. Atmos. Chem. Phys. 6, 729—753, http://dx.doi.org/10.5194/acp-6-729-2006.
  • 13.Haywood, J.M., Ramaswamy, V., 1998. Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. J. Geophys. Res. 103, http://dx.doi.org/ 10.1029/97JD03426.
  • 14.Kirchstetter, T.W., Novakov, T., Hobbs, P.V., 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. 109, http://dx.doi.org/ 10.1029/2004JD004999.
  • 15.Liousse, C., Penner, J.E., Chuang, C., Walton, J.J., Eddleman, H., Cachier, H., 1996. A global three-dimensional model study of carbonaceous aerosols. J. Geophys. Res. 101, http://dx.doi.org/ 10.1029/95JD03426.
  • 16.Markowicz, K., Zielinski, T., Pietruczuk, A., Posyniak, M., Zawadzka, O., Makuch, P., Stachlewska, I., Jagodnicka, A., Petelski, T., Kumala, W., Sobolewski, P., Stacewicz, T., 2011. Remote sensing measurements of the volcanic ash plume over Poland in April 2010. Atmos. Environ. 48, 66—75, http://dx.doi.org/10.1016/j. atmosenv.2011.07.015.
  • 17.Petelski, T., Markuszewski, P., Makuch, P., Jankowski, A., Rozwadowska, A., 2014. Studies of vertical coarse aerosol fluxes in the boundary layer over the Baltic Sea. Oceanologia 56 (4), 697—710, http://dx.doi.org/10.5697/oc.56-4.697.
  • 18.Pio, C., Legrand, M., Alves, C., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H., Sanchez-Ochoa, A., Gelencsér, A., 2008. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmos. Environ. 42, 7530—7543.
  • 19.Shindell, D., Schulz, M., Ming, Y., Takemura, T., Faluvegi, G., Ramaswamy, V., 2010. Spatial scales of climate response to inhomogeneous radiative forcing. J. Geophys. Res. Atmos. 115, D19110, http://dx.doi.org/10.1029/2010JD014108.
  • 20.Smirnov, A., Holben, B., Giles, D., Slutsker, I., O'Neill, N., Eck, T., Macke, A., Croot, P., Courcoux, Y., Sakerin, S., Smyth, T., Zielinski, T., Zibordi, G., Goes, J., Harvey, J., Quinn, P., Nelson, N., Radionov, V., Duarte, C., Losno, R., Sciare, J., Voss, K., Kinne, S., Nalli, N., Joseph, E., Moorthy, D., Covert, S., Gulev, S., Milinevsky, G., Larouche, P., Belanger, S., Horne, E., Chin, M., Remer, L., Kahn, R., Reid, J., Schulz, M., Heald, C., Zhang, J., Lapina, K., Kleidman, R., Griesfeller, J., Gaitley, B., Tan, Q., Diehl, T., 2011. Maritime aerosol network as a component of AERONET — first results and comparison with global aerosol models and satellite retrievals. Atmos. Meas. Tech. 4, http://dx.doi.org/10.5194/ amt-4-583-2011.
  • 21.Smirnov, A., Royer, A., O'Neill, N., Tarussov, A., 1994. A study of the link between synoptic air mass type and atmospheric optical parameters. J. Geophys. Res. 99 (D10), 20967—20982.
  • 22.Takemura, T., Nakajima, T., Dubovik, O., Holben, B., Kinne, S., 2002. Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Climate 15 (4), 333—352, http://dx.doi.org/10.1175/1520-0442(2002)015<0333: SSAARF>2.0.CO;2.
  • 23.IPCC — Intergovernmental Panel on Climate Change, 2007, https:// www.ipcc.ch/publications_and_data/publications_and_data_ reports.shtml.
  • 24.IPCC — Intergovernmental Panel on Climate Change, 2013, https:// www.ipcc.ch/publications_and_data/publications_and_data_ reports.shtml.
  • 25.Torres, O., Bhartia, P., Herman, J., Ahmad, Z., 1998. Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis. J. Geophys. Res. 103, 17099—17110.
  • 26.Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P., Veefkind, P., Levelt, P., 2007. Aerosols and surface UV products from Ozone Monitoring Instrument observations: an overview. J. Geophys. Res. 112, D24S47, http://dx.doi.org/ 10.1029/2007JD008809.
  • 27.Tosca, M., Randerson, J., Zender, C., 2013. Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation. Atmos. Chem. Phys. 13, 5227—5241, http://dx.doi.org/ 10.5194/acp-13-5227-2013.
  • 28.Witek, M.L., Flatau, P., Quinn, P., Westphal, D., 2007. Global sea-salt modeling: results and validation against multicampaign shipboard measurements. J. Geophys. Res. 112, D08215, http://dx.doi.org/ 10.1029/2006JD007779.
  • 29.Zawadzka, O., Markowicz, K.M., Pietruczuk, A., Zielinski, T., Jaroslawski, J., 2013. Impact of urban pollution emitted in Warsaw on aerosol properties. Atmos. Environ. 69, 15—28.
  • 30.Zdun, A., Rozwadowska, A., Kratzer, S., 2011. Seasonal variability in the optical properties of Baltic aerosols. Oceanologia 53 (1), 7— 34, http://dx.doi.org/10.5697/oc.53-1.007.
  • 31.Zielinski, T., 2004. Studies of aerosol physical properties in coastal areas. Aerosol Sci. Tech. 38 (5), 513—524.
  • 32.Zielinski, T., Zielinski, A., 2002. Aerosol extinction and optical thickness in the atmosphere over the Baltic Sea determined with lidar. J. Aerosol Sci. 33 (6), 47—61.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-de3b13f0-3f92-423e-bf43-59c0e51e05f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.